zephyr/drivers/sdhc/imx_usdhc.c
Daniel DeGrasse bf61a47887 drivers: sdhc: imx_usdhc: extend reset timeout duration
Some instances of the USDHC peripheral take longer to reset, and will
timeout with the previous delay of 100 cycles. Extend this delay to 1000
cycles to resolve this.

Signed-off-by: Daniel DeGrasse <daniel.degrasse@nxp.com>
2024-05-14 20:23:28 -04:00

1125 lines
32 KiB
C

/*
* Copyright 2022 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_usdhc
#include <zephyr/kernel.h>
#include <zephyr/devicetree.h>
#include <zephyr/drivers/sdhc.h>
#include <zephyr/sd/sd_spec.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/logging/log.h>
#include <soc.h>
#include <zephyr/drivers/pinctrl.h>
#define PINCTRL_STATE_SLOW PINCTRL_STATE_PRIV_START
#define PINCTRL_STATE_MED (PINCTRL_STATE_PRIV_START + 1U)
#define PINCTRL_STATE_FAST (PINCTRL_STATE_PRIV_START + 2U)
#define PINCTRL_STATE_NOPULL (PINCTRL_STATE_PRIV_START + 3U)
LOG_MODULE_REGISTER(usdhc, CONFIG_SDHC_LOG_LEVEL);
#include <fsl_usdhc.h>
#include <fsl_cache.h>
#include <zephyr/irq.h>
enum transfer_callback_status {
TRANSFER_CMD_COMPLETE = BIT(0),
TRANSFER_CMD_FAILED = BIT(1),
TRANSFER_DATA_COMPLETE = BIT(2),
TRANSFER_DATA_FAILED = BIT(3),
};
#define TRANSFER_CMD_FLAGS (TRANSFER_CMD_COMPLETE | TRANSFER_CMD_FAILED)
#define TRANSFER_DATA_FLAGS (TRANSFER_DATA_COMPLETE | TRANSFER_DATA_FAILED)
/* USDHC tuning constants */
#define IMX_USDHC_STANDARD_TUNING_START (10U)
#define IMX_USDHC_TUNING_STEP (2U)
#define IMX_USDHC_STANDARD_TUNING_COUNTER (60U)
/* Default transfer timeout in ms for tuning */
#define IMX_USDHC_DEFAULT_TIMEOUT (5000U)
struct usdhc_host_transfer {
usdhc_transfer_t *transfer;
k_timeout_t command_timeout;
k_timeout_t data_timeout;
};
struct usdhc_config {
USDHC_Type *base;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
uint8_t nusdhc;
const struct gpio_dt_spec pwr_gpio;
const struct gpio_dt_spec detect_gpio;
bool detect_dat3;
bool no_180_vol;
uint32_t data_timeout;
uint32_t read_watermark;
uint32_t write_watermark;
uint32_t max_current_330;
uint32_t max_current_300;
uint32_t max_current_180;
uint32_t power_delay_ms;
uint32_t min_bus_freq;
uint32_t max_bus_freq;
bool mmc_hs200_1_8v;
bool mmc_hs400_1_8v;
const struct pinctrl_dev_config *pincfg;
void (*irq_config_func)(const struct device *dev);
};
struct usdhc_data {
const struct device *dev;
struct sdhc_host_props props;
bool card_present;
struct k_sem transfer_sem;
volatile uint32_t transfer_status;
usdhc_handle_t transfer_handle;
struct sdhc_io host_io;
struct k_mutex access_mutex;
sdhc_interrupt_cb_t sdhc_cb;
struct gpio_callback cd_callback;
void *sdhc_cb_user_data;
uint8_t usdhc_rx_dummy[128] __aligned(32);
#ifdef CONFIG_IMX_USDHC_DMA_SUPPORT
uint32_t *usdhc_dma_descriptor; /* ADMA descriptor table (noncachable) */
uint32_t dma_descriptor_len; /* DMA descriptor table length in words */
#endif
};
static void transfer_complete_cb(USDHC_Type *usdhc, usdhc_handle_t *handle,
status_t status, void *user_data)
{
const struct device *dev = (const struct device *)user_data;
struct usdhc_data *data = dev->data;
if (status == kStatus_USDHC_TransferDataFailed) {
data->transfer_status |= TRANSFER_DATA_FAILED;
} else if (status == kStatus_USDHC_TransferDataComplete) {
data->transfer_status |= TRANSFER_DATA_COMPLETE;
} else if (status == kStatus_USDHC_SendCommandFailed) {
data->transfer_status |= TRANSFER_CMD_FAILED;
} else if (status == kStatus_USDHC_SendCommandSuccess) {
data->transfer_status |= TRANSFER_CMD_COMPLETE;
}
k_sem_give(&data->transfer_sem);
}
static void sdio_interrupt_cb(USDHC_Type *usdhc, void *user_data)
{
const struct device *dev = user_data;
struct usdhc_data *data = dev->data;
if (data->sdhc_cb) {
data->sdhc_cb(dev, SDHC_INT_SDIO, data->sdhc_cb_user_data);
}
}
static void card_inserted_cb(USDHC_Type *usdhc, void *user_data)
{
const struct device *dev = user_data;
struct usdhc_data *data = dev->data;
if (data->sdhc_cb) {
data->sdhc_cb(dev, SDHC_INT_INSERTED, data->sdhc_cb_user_data);
}
}
static void card_removed_cb(USDHC_Type *usdhc, void *user_data)
{
const struct device *dev = user_data;
struct usdhc_data *data = dev->data;
if (data->sdhc_cb) {
data->sdhc_cb(dev, SDHC_INT_REMOVED, data->sdhc_cb_user_data);
}
}
static void card_detect_gpio_cb(const struct device *port,
struct gpio_callback *cb,
gpio_port_pins_t pins)
{
struct usdhc_data *data = CONTAINER_OF(cb, struct usdhc_data, cd_callback);
const struct device *dev = data->dev;
const struct usdhc_config *cfg = dev->config;
if (data->sdhc_cb) {
if (gpio_pin_get_dt(&cfg->detect_gpio)) {
data->sdhc_cb(dev, SDHC_INT_INSERTED, data->sdhc_cb_user_data);
} else {
data->sdhc_cb(dev, SDHC_INT_REMOVED, data->sdhc_cb_user_data);
}
}
}
static void imx_usdhc_select_1_8v(USDHC_Type *base, bool enable_1_8v)
{
#if !(defined(FSL_FEATURE_USDHC_HAS_NO_VOLTAGE_SELECT) && \
(FSL_FEATURE_USDHC_HAS_NO_VOLTAGE_SELECT))
UDSHC_SelectVoltage(base, enable_1_8v);
#endif
}
static int imx_usdhc_dat3_pull(const struct usdhc_config *cfg, bool pullup)
{
int ret = 0U;
ret = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_NOPULL);
if (ret) {
LOG_ERR("No DAT3 floating state defined, but dat3 detect selected");
return ret;
}
#ifdef CONFIG_IMX_USDHC_DAT3_PWR_TOGGLE
if (!pullup) {
/* Power off the card to clear DAT3 legacy status */
if (cfg->pwr_gpio.port) {
ret = gpio_pin_set_dt(&cfg->pwr_gpio, 0);
if (ret) {
return ret;
}
/* Delay for card power off to complete */
k_busy_wait(1000);
ret = gpio_pin_set_dt(&cfg->pwr_gpio, 1);
/* Delay for power on */
k_busy_wait(1000);
if (ret) {
return ret;
}
}
}
#endif
return ret;
}
/*
* Reset SDHC after command error
*/
static void imx_usdhc_error_recovery(const struct device *dev)
{
const struct usdhc_config *cfg = dev->config;
uint32_t status = USDHC_GetPresentStatusFlags(cfg->base);
if (status & kUSDHC_CommandInhibitFlag) {
/* Reset command line */
USDHC_Reset(cfg->base, kUSDHC_ResetCommand, 100U);
}
if (((status & (uint32_t)kUSDHC_DataInhibitFlag) != 0U) ||
(USDHC_GetAdmaErrorStatusFlags(cfg->base) != 0U)) {
/* Reset data line */
USDHC_Reset(cfg->base, kUSDHC_DataInhibitFlag, 100U);
}
}
/*
* Initialize SDHC host properties for use in get_host_props api call
*/
static void imx_usdhc_init_host_props(const struct device *dev)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *data = dev->data;
usdhc_capability_t caps;
struct sdhc_host_props *props = &data->props;
memset(props, 0, sizeof(struct sdhc_host_props));
props->f_max = cfg->max_bus_freq;
props->f_min = cfg->min_bus_freq;
props->max_current_330 = cfg->max_current_330;
props->max_current_180 = cfg->max_current_180;
props->power_delay = cfg->power_delay_ms;
/* Read host capabilities */
USDHC_GetCapability(cfg->base, &caps);
if (cfg->no_180_vol) {
props->host_caps.vol_180_support = false;
} else {
props->host_caps.vol_180_support = (bool)(caps.flags & kUSDHC_SupportV180Flag);
}
props->host_caps.vol_300_support = (bool)(caps.flags & kUSDHC_SupportV300Flag);
props->host_caps.vol_330_support = (bool)(caps.flags & kUSDHC_SupportV330Flag);
props->host_caps.suspend_res_support = (bool)(caps.flags & kUSDHC_SupportSuspendResumeFlag);
props->host_caps.sdma_support = (bool)(caps.flags & kUSDHC_SupportDmaFlag);
props->host_caps.high_spd_support = (bool)(caps.flags & kUSDHC_SupportHighSpeedFlag);
props->host_caps.adma_2_support = (bool)(caps.flags & kUSDHC_SupportAdmaFlag);
props->host_caps.max_blk_len = (bool)(caps.maxBlockLength);
props->host_caps.ddr50_support = (bool)(caps.flags & kUSDHC_SupportDDR50Flag);
props->host_caps.sdr104_support = (bool)(caps.flags & kUSDHC_SupportSDR104Flag);
props->host_caps.sdr50_support = (bool)(caps.flags & kUSDHC_SupportSDR50Flag);
props->host_caps.bus_8_bit_support = (bool)(caps.flags & kUSDHC_Support8BitFlag);
props->host_caps.bus_4_bit_support = (bool)(caps.flags & kUSDHC_Support4BitFlag);
props->host_caps.hs200_support = (bool)(cfg->mmc_hs200_1_8v);
props->host_caps.hs400_support = (bool)(cfg->mmc_hs400_1_8v);
}
/*
* Reset USDHC controller
*/
static int imx_usdhc_reset(const struct device *dev)
{
const struct usdhc_config *cfg = dev->config;
/* Switch to default I/O voltage of 3.3V */
imx_usdhc_select_1_8v(cfg->base, false);
USDHC_EnableDDRMode(cfg->base, false, 0U);
#if defined(FSL_FEATURE_USDHC_HAS_SDR50_MODE) && (FSL_FEATURE_USDHC_HAS_SDR50_MODE)
USDHC_EnableStandardTuning(cfg->base, 0, 0, false);
USDHC_EnableAutoTuning(cfg->base, false);
#endif
#if FSL_FEATURE_USDHC_HAS_HS400_MODE
/* Disable HS400 mode */
USDHC_EnableHS400Mode(cfg->base, false);
/* Disable DLL */
USDHC_EnableStrobeDLL(cfg->base, false);
#endif
/* Reset data/command/tuning circuit */
return USDHC_Reset(cfg->base, kUSDHC_ResetAll, 1000U) == true ? 0 : -ETIMEDOUT;
}
/*
* Set SDHC io properties
*/
static int imx_usdhc_set_io(const struct device *dev, struct sdhc_io *ios)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *data = dev->data;
uint32_t src_clk_hz, bus_clk;
struct sdhc_io *host_io = &data->host_io;
LOG_DBG("SDHC I/O: bus width %d, clock %dHz, card power %s, voltage %s",
ios->bus_width,
ios->clock,
ios->power_mode == SDHC_POWER_ON ? "ON" : "OFF",
ios->signal_voltage == SD_VOL_1_8_V ? "1.8V" : "3.3V"
);
if (clock_control_get_rate(cfg->clock_dev,
cfg->clock_subsys,
&src_clk_hz)) {
return -EINVAL;
}
if (ios->clock && (ios->clock > data->props.f_max || ios->clock < data->props.f_min)) {
return -EINVAL;
}
/* Set host clock */
if (host_io->clock != ios->clock) {
if (ios->clock != 0) {
/* Enable the clock output */
bus_clk = USDHC_SetSdClock(cfg->base, src_clk_hz, ios->clock);
LOG_DBG("BUS CLOCK: %d", bus_clk);
if (bus_clk == 0) {
return -ENOTSUP;
}
}
host_io->clock = ios->clock;
}
/* Set bus width */
if (host_io->bus_width != ios->bus_width) {
switch (ios->bus_width) {
case SDHC_BUS_WIDTH1BIT:
USDHC_SetDataBusWidth(cfg->base, kUSDHC_DataBusWidth1Bit);
break;
case SDHC_BUS_WIDTH4BIT:
USDHC_SetDataBusWidth(cfg->base, kUSDHC_DataBusWidth4Bit);
break;
case SDHC_BUS_WIDTH8BIT:
USDHC_SetDataBusWidth(cfg->base, kUSDHC_DataBusWidth8Bit);
break;
default:
return -ENOTSUP;
}
host_io->bus_width = ios->bus_width;
}
/* Set host signal voltage */
if (ios->signal_voltage != host_io->signal_voltage) {
switch (ios->signal_voltage) {
case SD_VOL_3_3_V:
case SD_VOL_3_0_V:
imx_usdhc_select_1_8v(cfg->base, false);
break;
case SD_VOL_1_8_V:
/**
* USDHC peripheral deviates from SD spec here.
* The host controller specification claims
* the "SD clock enable" bit can be used to gate the SD
* clock by clearing it. The USDHC controller does not
* provide this bit, only a way to force the SD clock
* on. We will instead delay 10 ms to allow the clock
* to be gated for enough time, then force it on for
* 10 ms, then allow it to be gated again.
*/
/* Switch to 1.8V */
imx_usdhc_select_1_8v(cfg->base, true);
/* Wait 10 ms- clock will be gated during this period */
k_msleep(10);
/* Force the clock on */
USDHC_ForceClockOn(cfg->base, true);
/* Keep the clock on for a moment, so SD will recognize it */
k_msleep(10);
/* Stop forcing clock on */
USDHC_ForceClockOn(cfg->base, false);
break;
default:
return -ENOTSUP;
}
/* Save new host voltage */
host_io->signal_voltage = ios->signal_voltage;
}
/* Set card power */
if ((host_io->power_mode != ios->power_mode) && (cfg->pwr_gpio.port)) {
if (ios->power_mode == SDHC_POWER_OFF) {
gpio_pin_set_dt(&cfg->pwr_gpio, 0);
} else if (ios->power_mode == SDHC_POWER_ON) {
gpio_pin_set_dt(&cfg->pwr_gpio, 1);
}
host_io->power_mode = ios->power_mode;
}
/* Set I/O timing */
if (host_io->timing != ios->timing) {
switch (ios->timing) {
case SDHC_TIMING_LEGACY:
case SDHC_TIMING_HS:
break;
case SDHC_TIMING_DDR50:
case SDHC_TIMING_DDR52:
/* Enable DDR mode */
USDHC_EnableDDRMode(cfg->base, true, 0);
__fallthrough;
case SDHC_TIMING_SDR12:
case SDHC_TIMING_SDR25:
pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_SLOW);
break;
case SDHC_TIMING_SDR50:
pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_MED);
break;
case SDHC_TIMING_HS400:
#if FSL_FEATURE_USDHC_HAS_HS400_MODE
USDHC_EnableHS400Mode(cfg->base, true);
USDHC_EnableDDRMode(cfg->base, true, 0U);
USDHC_ConfigStrobeDLL(cfg->base, 7U, 4U);
USDHC_EnableStrobeDLL(cfg->base, true);
#else
LOG_ERR("HS400 not supported for this device");
return -ENOTSUP;
#endif
case SDHC_TIMING_SDR104:
case SDHC_TIMING_HS200:
pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_FAST);
break;
default:
return -ENOTSUP;
}
host_io->timing = ios->timing;
}
return 0;
}
/*
* Internal transfer function, used by tuning and request apis
*/
static int imx_usdhc_transfer(const struct device *dev,
struct usdhc_host_transfer *request)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *dev_data = dev->data;
status_t error;
#ifdef CONFIG_IMX_USDHC_DMA_SUPPORT
usdhc_adma_config_t dma_config = {0};
/* Configure DMA */
dma_config.admaTable = dev_data->usdhc_dma_descriptor;
dma_config.admaTableWords = dev_data->dma_descriptor_len;
#if !(defined(FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN) && FSL_FEATURE_USDHC_HAS_NO_RW_BURST_LEN)
dma_config.burstLen = kUSDHC_EnBurstLenForINCR;
#endif
dma_config.dmaMode = kUSDHC_DmaModeAdma2;
#endif /* CONFIG_IMX_USDHC_DMA_SUPPORT */
/* Reset transfer status */
dev_data->transfer_status = 0U;
/* Reset semaphore */
k_sem_reset(&dev_data->transfer_sem);
#ifdef CONFIG_IMX_USDHC_DMA_SUPPORT
error = USDHC_TransferNonBlocking(cfg->base, &dev_data->transfer_handle,
&dma_config, request->transfer);
#else
error = USDHC_TransferNonBlocking(cfg->base, &dev_data->transfer_handle,
NULL, request->transfer);
#endif
if (error == kStatus_USDHC_ReTuningRequest) {
return -EAGAIN;
} else if (error != kStatus_Success) {
return -EIO;
}
/* Wait for event to occur */
while ((dev_data->transfer_status & (TRANSFER_CMD_FLAGS | TRANSFER_DATA_FLAGS)) == 0) {
if (k_sem_take(&dev_data->transfer_sem, request->command_timeout)) {
return -ETIMEDOUT;
}
}
if (dev_data->transfer_status & TRANSFER_CMD_FAILED) {
return -EIO;
}
/* If data was sent, wait for that to complete */
if (request->transfer->data) {
while ((dev_data->transfer_status & TRANSFER_DATA_FLAGS) == 0) {
if (k_sem_take(&dev_data->transfer_sem, request->data_timeout)) {
return -ETIMEDOUT;
}
}
if (dev_data->transfer_status & TRANSFER_DATA_FAILED) {
return -EIO;
}
}
return 0;
}
/* Stops transmission after failed command with CMD12 */
static void imx_usdhc_stop_transmission(const struct device *dev)
{
usdhc_command_t stop_cmd = {0};
struct usdhc_host_transfer request;
usdhc_transfer_t transfer;
/* Send CMD12 to stop transmission */
stop_cmd.index = SD_STOP_TRANSMISSION;
stop_cmd.argument = 0U;
stop_cmd.type = kCARD_CommandTypeAbort;
stop_cmd.responseType = SD_RSP_TYPE_R1b;
transfer.command = &stop_cmd;
transfer.data = NULL;
request.transfer = &transfer;
request.command_timeout = K_MSEC(IMX_USDHC_DEFAULT_TIMEOUT);
request.data_timeout = K_MSEC(IMX_USDHC_DEFAULT_TIMEOUT);
imx_usdhc_transfer(dev, &request);
}
/*
* Return 0 if card is not busy, 1 if it is
*/
static int imx_usdhc_card_busy(const struct device *dev)
{
const struct usdhc_config *cfg = dev->config;
return (USDHC_GetPresentStatusFlags(cfg->base)
& (kUSDHC_Data0LineLevelFlag |
kUSDHC_Data1LineLevelFlag |
kUSDHC_Data2LineLevelFlag |
kUSDHC_Data3LineLevelFlag))
? 0 : 1;
}
/*
* Execute card tuning
*/
static int imx_usdhc_execute_tuning(const struct device *dev)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *dev_data = dev->data;
usdhc_command_t cmd = {0};
usdhc_data_t data = {0};
struct usdhc_host_transfer request;
usdhc_transfer_t transfer;
int ret;
bool retry_tuning = true;
if ((dev_data->host_io.timing == SDHC_TIMING_HS200) ||
(dev_data->host_io.timing == SDHC_TIMING_HS400)) {
/*Currently only reaches here when MMC */
cmd.index = MMC_SEND_TUNING_BLOCK;
} else {
cmd.index = SD_SEND_TUNING_BLOCK;
}
cmd.argument = 0;
cmd.responseType = SD_RSP_TYPE_R1;
if (dev_data->host_io.bus_width == SDHC_BUS_WIDTH8BIT) {
data.blockSize = sizeof(dev_data->usdhc_rx_dummy);
} else {
data.blockSize = sizeof(dev_data->usdhc_rx_dummy) / 2;
}
data.blockCount = 1;
data.rxData = (uint32_t *)dev_data->usdhc_rx_dummy;
data.dataType = kUSDHC_TransferDataTuning;
transfer.command = &cmd;
transfer.data = &data;
/* Reset tuning circuit */
USDHC_Reset(cfg->base, kUSDHC_ResetTuning, 100U);
/* Disable standard tuning */
USDHC_EnableStandardTuning(cfg->base, IMX_USDHC_STANDARD_TUNING_START,
IMX_USDHC_TUNING_STEP, false);
USDHC_ForceClockOn(cfg->base, true);
/*
* Tuning fail found on some SOCs is caused by the different of delay
* cell, so we need to increase the tuning counter to cover the
* adjustable tuning window
*/
USDHC_SetStandardTuningCounter(cfg->base, IMX_USDHC_STANDARD_TUNING_COUNTER);
/* Reenable standard tuning */
USDHC_EnableStandardTuning(cfg->base, IMX_USDHC_STANDARD_TUNING_START,
IMX_USDHC_TUNING_STEP, true);
request.command_timeout = K_MSEC(IMX_USDHC_DEFAULT_TIMEOUT);
request.data_timeout = K_MSEC(IMX_USDHC_DEFAULT_TIMEOUT);
request.transfer = &transfer;
while (true) {
ret = imx_usdhc_transfer(dev, &request);
if (ret) {
return ret;
}
/* Delay 1ms */
k_busy_wait(1000);
/* Wait for execute tuning bit to clear */
if (USDHC_GetExecuteStdTuningStatus(cfg->base) != 0) {
continue;
}
/* If tuning had error, retry tuning */
if ((USDHC_CheckTuningError(cfg->base) != 0U) && retry_tuning) {
retry_tuning = false;
/* Enable standard tuning */
USDHC_EnableStandardTuning(cfg->base,
IMX_USDHC_STANDARD_TUNING_START,
IMX_USDHC_TUNING_STEP, true);
USDHC_SetTuningDelay(cfg->base,
IMX_USDHC_STANDARD_TUNING_START, 0U, 0U);
} else {
break;
}
}
/* Check tuning result */
if (USDHC_CheckStdTuningResult(cfg->base) == 0) {
return -EIO;
}
USDHC_ForceClockOn(cfg->base, false);
/* Enable auto tuning */
USDHC_EnableAutoTuning(cfg->base, true);
return 0;
}
/*
* Send CMD or CMD/DATA via SDHC
*/
static int imx_usdhc_request(const struct device *dev, struct sdhc_command *cmd,
struct sdhc_data *data)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *dev_data = dev->data;
usdhc_command_t host_cmd = {0};
usdhc_data_t host_data = {0};
struct usdhc_host_transfer request;
usdhc_transfer_t transfer;
int busy_timeout = IMX_USDHC_DEFAULT_TIMEOUT;
int ret = 0;
int retries = (int)cmd->retries;
if (cmd->opcode == SD_GO_IDLE_STATE) {
USDHC_SetCardActive(cfg->base, 0xFFFF);
}
host_cmd.index = cmd->opcode;
host_cmd.argument = cmd->arg;
/* Mask out part of response type field used for SPI commands */
host_cmd.responseType = (cmd->response_type & SDHC_NATIVE_RESPONSE_MASK);
transfer.command = &host_cmd;
if (cmd->timeout_ms == SDHC_TIMEOUT_FOREVER) {
request.command_timeout = K_FOREVER;
} else {
request.command_timeout = K_MSEC(cmd->timeout_ms);
}
if (data) {
host_data.blockSize = data->block_size;
host_data.blockCount = data->blocks;
/*
* Determine type of command. Note that driver is expected to
* handle CMD12 and CMD23 for reading and writing blocks
*/
switch (cmd->opcode) {
case SD_WRITE_SINGLE_BLOCK:
host_data.enableAutoCommand12 = true;
host_data.txData = data->data;
break;
case SD_WRITE_MULTIPLE_BLOCK:
if (dev_data->host_io.timing == SDHC_TIMING_SDR104) {
/* Card uses UHS104, so it must support CMD23 */
host_data.enableAutoCommand23 = true;
} else {
/* No CMD23 support */
host_data.enableAutoCommand12 = true;
}
host_data.txData = data->data;
break;
case SD_READ_SINGLE_BLOCK:
host_data.enableAutoCommand12 = true;
host_data.rxData = data->data;
break;
case SD_READ_MULTIPLE_BLOCK:
if (dev_data->host_io.timing == SDHC_TIMING_SDR104) {
/* Card uses UHS104, so it must support CMD23 */
host_data.enableAutoCommand23 = true;
} else {
/* No CMD23 support */
host_data.enableAutoCommand12 = true;
}
host_data.rxData = data->data;
break;
case MMC_CHECK_BUS_TEST:
case MMC_SEND_EXT_CSD:
case SD_APP_SEND_SCR:
case SD_SWITCH:
case SD_APP_SEND_NUM_WRITTEN_BLK:
host_data.rxData = data->data;
break;
case SDIO_RW_EXTENDED:
/* Use R/W bit to determine data direction */
if (host_cmd.argument & BIT(SDIO_CMD_ARG_RW_SHIFT)) {
host_data.txData = data->data;
} else {
host_data.rxData = data->data;
}
break;
default:
return -ENOTSUP;
}
transfer.data = &host_data;
if (data->timeout_ms == SDHC_TIMEOUT_FOREVER) {
request.data_timeout = K_FOREVER;
} else {
request.data_timeout = K_MSEC(data->timeout_ms);
}
} else {
transfer.data = NULL;
request.data_timeout = K_NO_WAIT;
}
request.transfer = &transfer;
/* Ensure we have exclusive access to SD card before sending request */
if (k_mutex_lock(&dev_data->access_mutex, request.command_timeout) != 0) {
return -EBUSY;
}
while (retries >= 0) {
ret = imx_usdhc_transfer(dev, &request);
if (ret && data) {
/*
* Disable and clear interrupts. If the data transmission
* completes later, we will encounter issues because
* the USDHC driver expects data to be present in the
* current transmission, but CMD12 does not contain data
*/
USDHC_DisableInterruptSignal(cfg->base, kUSDHC_CommandFlag |
kUSDHC_DataFlag | kUSDHC_DataDMAFlag);
USDHC_ClearInterruptStatusFlags(cfg->base, kUSDHC_CommandFlag |
kUSDHC_DataFlag | kUSDHC_DataDMAFlag);
/* Stop transmission with CMD12 in case of data error */
imx_usdhc_stop_transmission(dev);
/* Wait for card to go idle */
while (busy_timeout > 0) {
if (!imx_usdhc_card_busy(dev)) {
break;
}
/* Wait 125us before polling again */
k_busy_wait(125);
busy_timeout -= 125;
}
if (busy_timeout <= 0) {
LOG_DBG("Card did not idle after CMD12");
k_mutex_unlock(&dev_data->access_mutex);
return -ETIMEDOUT;
}
}
if (ret == -EAGAIN) {
/* Retry, card made a tuning request */
if (dev_data->host_io.timing == SDHC_TIMING_SDR50 ||
dev_data->host_io.timing == SDHC_TIMING_SDR104 ||
dev_data->host_io.timing == SDHC_TIMING_HS200 ||
dev_data->host_io.timing == SDHC_TIMING_HS400) {
/* Retune card */
LOG_DBG("Card made tuning request, retune");
ret = imx_usdhc_execute_tuning(dev);
if (ret) {
LOG_DBG("Card failed to tune");
k_mutex_unlock(&dev_data->access_mutex);
return ret;
}
}
}
if (ret) {
imx_usdhc_error_recovery(dev);
retries--;
} else {
break;
}
}
/* Release access on card */
k_mutex_unlock(&dev_data->access_mutex);
/* Record command response */
memcpy(cmd->response, host_cmd.response, sizeof(cmd->response));
if (data) {
/* Record number of bytes xfered */
data->bytes_xfered = dev_data->transfer_handle.transferredWords;
}
return ret;
}
/*
* Get card presence
*/
static int imx_usdhc_get_card_present(const struct device *dev)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *data = dev->data;
if (cfg->detect_dat3) {
/*
* If card is already present, do not retry detection.
* Power line toggling would reset SD card
*/
if (!data->card_present) {
/* Detect card presence with DAT3 line pull */
imx_usdhc_dat3_pull(cfg, false);
USDHC_CardDetectByData3(cfg->base, true);
/* Delay to ensure host has time to detect card */
k_busy_wait(1000);
data->card_present = USDHC_DetectCardInsert(cfg->base);
/* Clear card detection and pull */
imx_usdhc_dat3_pull(cfg, true);
USDHC_CardDetectByData3(cfg->base, false);
}
} else if (cfg->detect_gpio.port) {
data->card_present = gpio_pin_get_dt(&cfg->detect_gpio) > 0;
} else {
data->card_present = USDHC_DetectCardInsert(cfg->base);
}
return ((int)data->card_present);
}
/*
* Get host properties
*/
static int imx_usdhc_get_host_props(const struct device *dev,
struct sdhc_host_props *props)
{
struct usdhc_data *data = dev->data;
memcpy(props, &data->props, sizeof(struct sdhc_host_props));
return 0;
}
/*
* Enable SDHC card interrupt
*/
static int imx_usdhc_enable_interrupt(const struct device *dev,
sdhc_interrupt_cb_t callback,
int sources, void *user_data)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *data = dev->data;
int ret;
/* Record SDIO callback parameters */
data->sdhc_cb = callback;
data->sdhc_cb_user_data = user_data;
/* Disable interrupts, then enable what the user requested */
USDHC_DisableInterruptStatus(cfg->base, kUSDHC_CardInterruptFlag);
USDHC_DisableInterruptSignal(cfg->base, kUSDHC_CardInterruptFlag);
if (cfg->detect_gpio.port) {
ret = gpio_pin_interrupt_configure_dt(&cfg->detect_gpio,
GPIO_INT_DISABLE);
if (ret) {
return ret;
}
} else {
USDHC_DisableInterruptSignal(cfg->base, kUSDHC_CardInsertionFlag);
USDHC_DisableInterruptStatus(cfg->base, kUSDHC_CardInsertionFlag);
USDHC_DisableInterruptSignal(cfg->base, kUSDHC_CardRemovalFlag);
USDHC_DisableInterruptStatus(cfg->base, kUSDHC_CardRemovalFlag);
}
if (sources & SDHC_INT_SDIO) {
/* Enable SDIO card interrupt */
USDHC_EnableInterruptStatus(cfg->base, kUSDHC_CardInterruptFlag);
USDHC_EnableInterruptSignal(cfg->base, kUSDHC_CardInterruptFlag);
}
if (sources & SDHC_INT_INSERTED) {
if (cfg->detect_gpio.port) {
/* Use GPIO interrupt */
ret = gpio_pin_interrupt_configure_dt(&cfg->detect_gpio,
GPIO_INT_EDGE_TO_ACTIVE);
if (ret) {
return ret;
}
} else {
/* Enable card insertion interrupt */
USDHC_EnableInterruptStatus(cfg->base,
kUSDHC_CardInsertionFlag);
USDHC_EnableInterruptSignal(cfg->base,
kUSDHC_CardInsertionFlag);
}
}
if (sources & SDHC_INT_REMOVED) {
if (cfg->detect_gpio.port) {
/* Use GPIO interrupt */
ret = gpio_pin_interrupt_configure_dt(&cfg->detect_gpio,
GPIO_INT_EDGE_TO_INACTIVE);
if (ret) {
return ret;
}
} else {
/* Enable card removal interrupt */
USDHC_EnableInterruptStatus(cfg->base,
kUSDHC_CardRemovalFlag);
USDHC_EnableInterruptSignal(cfg->base,
kUSDHC_CardRemovalFlag);
}
}
return 0;
}
static int imx_usdhc_disable_interrupt(const struct device *dev, int sources)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *data = dev->data;
int ret;
if (sources & SDHC_INT_SDIO) {
/* Disable SDIO card interrupt */
USDHC_DisableInterruptStatus(cfg->base, kUSDHC_CardInterruptFlag);
USDHC_DisableInterruptSignal(cfg->base, kUSDHC_CardInterruptFlag);
}
if (sources & SDHC_INT_INSERTED) {
if (cfg->detect_gpio.port) {
ret = gpio_pin_interrupt_configure_dt(&cfg->detect_gpio,
GPIO_INT_DISABLE);
if (ret) {
return ret;
}
} else {
/* Disable card insertion interrupt */
USDHC_DisableInterruptStatus(cfg->base,
kUSDHC_CardInsertionFlag);
USDHC_DisableInterruptSignal(cfg->base,
kUSDHC_CardInsertionFlag);
}
}
if (sources & SDHC_INT_REMOVED) {
if (cfg->detect_gpio.port) {
ret = gpio_pin_interrupt_configure_dt(&cfg->detect_gpio,
GPIO_INT_DISABLE);
if (ret) {
return ret;
}
} else {
/* Disable card removal interrupt */
USDHC_DisableInterruptStatus(cfg->base,
kUSDHC_CardRemovalFlag);
USDHC_DisableInterruptSignal(cfg->base,
kUSDHC_CardRemovalFlag);
}
}
/* If all interrupt flags are disabled, remove callback */
if ((USDHC_GetEnabledInterruptStatusFlags(cfg->base) &
(kUSDHC_CardInterruptFlag | kUSDHC_CardInsertionFlag |
kUSDHC_CardRemovalFlag)) == 0) {
data->sdhc_cb = NULL;
data->sdhc_cb_user_data = NULL;
}
return 0;
}
static int imx_usdhc_isr(const struct device *dev)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *data = dev->data;
USDHC_TransferHandleIRQ(cfg->base, &data->transfer_handle);
return 0;
}
/*
* Perform early system init for SDHC
*/
static int imx_usdhc_init(const struct device *dev)
{
const struct usdhc_config *cfg = dev->config;
struct usdhc_data *data = dev->data;
usdhc_config_t host_config = {0};
int ret;
const usdhc_transfer_callback_t callbacks = {
.TransferComplete = transfer_complete_cb,
.SdioInterrupt = sdio_interrupt_cb,
.CardInserted = card_inserted_cb,
.CardRemoved = card_removed_cb,
};
if (!device_is_ready(cfg->clock_dev)) {
LOG_ERR("clock control device not ready");
return -ENODEV;
}
ret = pinctrl_apply_state(cfg->pincfg, PINCTRL_STATE_DEFAULT);
if (ret) {
return ret;
}
USDHC_TransferCreateHandle(cfg->base, &data->transfer_handle,
&callbacks, (void *)dev);
cfg->irq_config_func(dev);
host_config.dataTimeout = cfg->data_timeout;
host_config.endianMode = kUSDHC_EndianModeLittle;
host_config.readWatermarkLevel = cfg->read_watermark;
host_config.writeWatermarkLevel = cfg->write_watermark;
USDHC_Init(cfg->base, &host_config);
/* Read host controller properties */
imx_usdhc_init_host_props(dev);
/* Set power GPIO low, so card starts powered off */
if (cfg->pwr_gpio.port) {
ret = gpio_pin_configure_dt(&cfg->pwr_gpio, GPIO_OUTPUT_INACTIVE);
if (ret) {
return ret;
}
} else {
LOG_WRN("No power control GPIO defined. Without power control,\n"
"the SD card may fail to communicate with the host");
}
if (cfg->detect_gpio.port) {
ret = gpio_pin_configure_dt(&cfg->detect_gpio, GPIO_INPUT);
if (ret) {
return ret;
}
gpio_init_callback(&data->cd_callback, card_detect_gpio_cb,
BIT(cfg->detect_gpio.pin));
ret = gpio_add_callback_dt(&cfg->detect_gpio, &data->cd_callback);
if (ret) {
return ret;
}
}
data->dev = dev;
k_mutex_init(&data->access_mutex);
/* Setup initial host IO values */
data->host_io.clock = 0;
data->host_io.bus_mode = SDHC_BUSMODE_PUSHPULL;
data->host_io.power_mode = SDHC_POWER_OFF;
data->host_io.bus_width = SDHC_BUS_WIDTH1BIT;
data->host_io.timing = SDHC_TIMING_LEGACY;
data->host_io.driver_type = SD_DRIVER_TYPE_B;
data->host_io.signal_voltage = SD_VOL_3_3_V;
return k_sem_init(&data->transfer_sem, 0, 1);
}
static const struct sdhc_driver_api usdhc_api = {
.reset = imx_usdhc_reset,
.request = imx_usdhc_request,
.set_io = imx_usdhc_set_io,
.get_card_present = imx_usdhc_get_card_present,
.execute_tuning = imx_usdhc_execute_tuning,
.card_busy = imx_usdhc_card_busy,
.get_host_props = imx_usdhc_get_host_props,
.enable_interrupt = imx_usdhc_enable_interrupt,
.disable_interrupt = imx_usdhc_disable_interrupt,
};
#ifdef CONFIG_NOCACHE_MEMORY
#define IMX_USDHC_NOCACHE_TAG __attribute__((__section__(".nocache")));
#else
#define IMX_USDHC_NOCACHE_TAG
#endif
#ifdef CONFIG_IMX_USDHC_DMA_SUPPORT
#define IMX_USDHC_DMA_BUFFER_DEFINE(n) \
static uint32_t __aligned(32) \
usdhc_##n##_dma_descriptor[CONFIG_IMX_USDHC_DMA_BUFFER_SIZE / 4]\
IMX_USDHC_NOCACHE_TAG;
#define IMX_USDHC_DMA_BUFFER_INIT(n) \
.usdhc_dma_descriptor = usdhc_##n##_dma_descriptor, \
.dma_descriptor_len = CONFIG_IMX_USDHC_DMA_BUFFER_SIZE / 4,
#else
#define IMX_USDHC_DMA_BUFFER_DEFINE(n)
#define IMX_USDHC_DMA_BUFFER_INIT(n)
#endif /* CONFIG_IMX_USDHC_DMA_SUPPORT */
#define IMX_USDHC_INIT(n) \
static void usdhc_##n##_irq_config_func(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
imx_usdhc_isr, DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
} \
\
PINCTRL_DT_INST_DEFINE(n); \
\
static const struct usdhc_config usdhc_##n##_config = { \
.base = (USDHC_Type *) DT_INST_REG_ADDR(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
.nusdhc = n, \
.pwr_gpio = GPIO_DT_SPEC_INST_GET_OR(n, pwr_gpios, {0}), \
.detect_gpio = GPIO_DT_SPEC_INST_GET_OR(n, cd_gpios, {0}), \
.data_timeout = DT_INST_PROP(n, data_timeout), \
.detect_dat3 = DT_INST_PROP(n, detect_dat3), \
.no_180_vol = DT_INST_PROP(n, no_1_8_v), \
.read_watermark = DT_INST_PROP(n, read_watermark), \
.write_watermark = DT_INST_PROP(n, write_watermark), \
.max_current_330 = DT_INST_PROP(n, max_current_330), \
.max_current_180 = DT_INST_PROP(n, max_current_180), \
.min_bus_freq = DT_INST_PROP(n, min_bus_freq), \
.max_bus_freq = DT_INST_PROP(n, max_bus_freq), \
.power_delay_ms = DT_INST_PROP(n, power_delay_ms), \
.mmc_hs200_1_8v = DT_INST_PROP(n, mmc_hs200_1_8v), \
.mmc_hs400_1_8v = DT_INST_PROP(n, mmc_hs400_1_8v), \
.irq_config_func = usdhc_##n##_irq_config_func, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
}; \
\
\
IMX_USDHC_DMA_BUFFER_DEFINE(n) \
\
static struct usdhc_data usdhc_##n##_data = { \
.card_present = false, \
IMX_USDHC_DMA_BUFFER_INIT(n) \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
&imx_usdhc_init, \
NULL, \
&usdhc_##n##_data, \
&usdhc_##n##_config, \
POST_KERNEL, \
CONFIG_SDHC_INIT_PRIORITY, \
&usdhc_api);
DT_INST_FOREACH_STATUS_OKAY(IMX_USDHC_INIT)