zephyr/drivers/memc/memc_mcux_flexspi.c
Daniel DeGrasse 372cf92060 drivers: memc: memc_mcux_flexspi: support initializing FLEXSPI when XIP
Add support for initializing the FLEXSPI when using a flash attached to
the FLEXSPI for XIP. This option is guarded behind a Kconfig, as
enabling it is dangerous and requires special care be taken by the user
to ensure that the configuration of pins and FLEXSPI settings will not
break support for reading the attached flash, as this will break XIP
support.

Signed-off-by: Daniel DeGrasse <daniel.degrasse@nxp.com>
2024-05-14 18:21:57 -04:00

450 lines
13 KiB
C

/*
* Copyright 2020-2023 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_flexspi
#include <zephyr/logging/log.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/pinctrl.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/pm/device.h>
#include <soc.h>
#include "memc_mcux_flexspi.h"
/*
* NOTE: If CONFIG_FLASH_MCUX_FLEXSPI_XIP is selected, Any external functions
* called while interacting with the flexspi MUST be relocated to SRAM or ITCM
* at runtime, so that the chip does not access the flexspi to read program
* instructions while it is being written to
*/
#if defined(CONFIG_FLASH_MCUX_FLEXSPI_XIP) && (CONFIG_MEMC_LOG_LEVEL > 0)
#warning "Enabling memc driver logging and XIP mode simultaneously can cause \
read-while-write hazards. This configuration is not recommended."
#endif
#define FLEXSPI_MAX_LUT 64U
LOG_MODULE_REGISTER(memc_flexspi, CONFIG_MEMC_LOG_LEVEL);
struct memc_flexspi_buf_cfg {
uint16_t prefetch;
uint16_t priority;
uint16_t master_id;
uint16_t buf_size;
} __packed;
/* Structure tracking LUT offset and usage per each port */
struct port_lut {
uint8_t lut_offset;
uint8_t lut_used;
};
/* flexspi device data should be stored in RAM to avoid read-while-write hazards */
struct memc_flexspi_data {
FLEXSPI_Type *base;
uint8_t *ahb_base;
bool xip;
bool ahb_bufferable;
bool ahb_cacheable;
bool ahb_prefetch;
bool ahb_read_addr_opt;
bool combination_mode;
bool sck_differential_clock;
flexspi_read_sample_clock_t rx_sample_clock;
#if defined(FSL_FEATURE_FLEXSPI_SUPPORT_SEPERATE_RXCLKSRC_PORTB) && \
FSL_FEATURE_FLEXSPI_SUPPORT_SEPERATE_RXCLKSRC_PORTB
flexspi_read_sample_clock_t rx_sample_clock_b;
#endif
const struct pinctrl_dev_config *pincfg;
size_t size[kFLEXSPI_PortCount];
struct port_lut port_luts[kFLEXSPI_PortCount];
struct memc_flexspi_buf_cfg *buf_cfg;
uint8_t buf_cfg_cnt;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
};
void memc_flexspi_wait_bus_idle(const struct device *dev)
{
struct memc_flexspi_data *data = dev->data;
while (false == FLEXSPI_GetBusIdleStatus(data->base)) {
}
}
bool memc_flexspi_is_running_xip(const struct device *dev)
{
struct memc_flexspi_data *data = dev->data;
return data->xip;
}
int memc_flexspi_update_clock(const struct device *dev,
flexspi_device_config_t *device_config,
flexspi_port_t port, uint32_t freq_hz)
{
struct memc_flexspi_data *data = dev->data;
uint32_t rate;
uint32_t key;
int ret;
/* To reclock the FlexSPI, we should:
* - disable the module
* - set the new clock
* - reenable the module
* - reset the module
* We CANNOT XIP at any point during this process
*/
key = irq_lock();
memc_flexspi_wait_bus_idle(dev);
ret = clock_control_set_rate(data->clock_dev, data->clock_subsys,
(clock_control_subsys_rate_t)freq_hz);
if (ret < 0) {
irq_unlock(key);
return ret;
}
/*
* We need to update the DLL value before we call clock_control_get_rate,
* because this will cause XIP (flash reads) to occur. Although the
* true flash clock is not known, assume the set_rate function programmed
* a value close to what we requested.
*/
device_config->flexspiRootClk = freq_hz;
FLEXSPI_UpdateDllValue(data->base, device_config, port);
memc_flexspi_reset(dev);
memc_flexspi_wait_bus_idle(dev);
ret = clock_control_get_rate(data->clock_dev, data->clock_subsys, &rate);
if (ret < 0) {
irq_unlock(key);
return ret;
}
device_config->flexspiRootClk = rate;
FLEXSPI_UpdateDllValue(data->base, device_config, port);
memc_flexspi_reset(dev);
irq_unlock(key);
return 0;
}
int memc_flexspi_set_device_config(const struct device *dev,
const flexspi_device_config_t *device_config,
const uint32_t *lut_array,
uint8_t lut_count,
flexspi_port_t port)
{
flexspi_device_config_t tmp_config;
uint32_t tmp_lut[FLEXSPI_MAX_LUT];
struct memc_flexspi_data *data = dev->data;
const uint32_t *lut_ptr = lut_array;
uint8_t lut_used = 0U;
unsigned int key = 0;
if (port >= kFLEXSPI_PortCount) {
LOG_ERR("Invalid port number");
return -EINVAL;
}
if (data->port_luts[port].lut_used < lut_count) {
/* We cannot reuse the existing LUT slot,
* Check if the LUT table will fit into the remaining LUT slots
*/
for (uint8_t i = 0; i < kFLEXSPI_PortCount; i++) {
lut_used += data->port_luts[i].lut_used;
}
if ((lut_used + lut_count) > FLEXSPI_MAX_LUT) {
return -ENOBUFS;
}
}
data->size[port] = device_config->flashSize * KB(1);
if (memc_flexspi_is_running_xip(dev)) {
/* We need to avoid flash access while configuring the FlexSPI.
* To do this, we will copy the LUT array into stack-allocated
* temporary memory
*/
memcpy(tmp_lut, lut_array, lut_count * MEMC_FLEXSPI_CMD_SIZE);
lut_ptr = tmp_lut;
}
memcpy(&tmp_config, device_config, sizeof(tmp_config));
/* Update FlexSPI AWRSEQID and ARDSEQID values based on where the LUT
* array will actually be loaded.
*/
if (data->port_luts[port].lut_used < lut_count) {
/* Update lut offset with new value */
data->port_luts[port].lut_offset = lut_used;
}
/* LUTs should only be installed on sequence boundaries, every
* 4 entries. Round LUT usage up to nearest sequence
*/
data->port_luts[port].lut_used = ROUND_UP(lut_count, 4);
tmp_config.ARDSeqIndex += data->port_luts[port].lut_offset / MEMC_FLEXSPI_CMD_PER_SEQ;
tmp_config.AWRSeqIndex += data->port_luts[port].lut_offset / MEMC_FLEXSPI_CMD_PER_SEQ;
/* Lock IRQs before reconfiguring FlexSPI, to prevent XIP */
key = irq_lock();
FLEXSPI_SetFlashConfig(data->base, &tmp_config, port);
FLEXSPI_UpdateLUT(data->base, data->port_luts[port].lut_offset,
lut_ptr, lut_count);
irq_unlock(key);
return 0;
}
int memc_flexspi_reset(const struct device *dev)
{
struct memc_flexspi_data *data = dev->data;
FLEXSPI_SoftwareReset(data->base);
return 0;
}
int memc_flexspi_transfer(const struct device *dev,
flexspi_transfer_t *transfer)
{
flexspi_transfer_t tmp;
struct memc_flexspi_data *data = dev->data;
status_t status;
uint32_t seq_off, addr_offset = 0U;
int i;
/* Calculate sequence offset and address offset based on port */
seq_off = data->port_luts[transfer->port].lut_offset /
MEMC_FLEXSPI_CMD_PER_SEQ;
for (i = 0; i < transfer->port; i++) {
addr_offset += data->size[i];
}
if ((seq_off != 0) || (addr_offset != 0)) {
/* Adjust device address and sequence index for transfer */
memcpy(&tmp, transfer, sizeof(tmp));
tmp.seqIndex += seq_off;
tmp.deviceAddress += addr_offset;
status = FLEXSPI_TransferBlocking(data->base, &tmp);
} else {
/* Transfer does not need adjustment */
status = FLEXSPI_TransferBlocking(data->base, transfer);
}
if (status != kStatus_Success) {
LOG_ERR("Transfer error: %d", status);
return -EIO;
}
return 0;
}
void *memc_flexspi_get_ahb_address(const struct device *dev,
flexspi_port_t port, off_t offset)
{
struct memc_flexspi_data *data = dev->data;
int i;
if (port >= kFLEXSPI_PortCount) {
LOG_ERR("Invalid port number: %u", port);
return NULL;
}
for (i = 0; i < port; i++) {
offset += data->size[i];
}
#if defined(FSL_FEATURE_FLEXSPI_SUPPORT_ADDRESS_SHIFT) && \
(FSL_FEATURE_FLEXSPI_SUPPORT_ADDRESS_SHIFT)
if (data->base->FLSHCR0[port] & FLEXSPI_FLSHCR0_ADDRSHIFT_MASK) {
/* Address shift is set, add 0x1000_0000 to AHB address */
offset += 0x10000000;
}
#endif
return data->ahb_base + offset;
}
static int memc_flexspi_init(const struct device *dev)
{
struct memc_flexspi_data *data = dev->data;
flexspi_config_t flexspi_config;
uint32_t flash_sizes[kFLEXSPI_PortCount];
int ret;
uint8_t i;
/* we should not configure the device we are running on */
if (memc_flexspi_is_running_xip(dev)) {
if (!IS_ENABLED(CONFIG_MEMC_MCUX_FLEXSPI_INIT_XIP)) {
LOG_DBG("XIP active on %s, skipping init", dev->name);
return 0;
}
}
/*
* SOCs such as the RT1064 and RT1024 have internal flash, and no pinmux
* settings, continue if no pinctrl state found.
*/
ret = pinctrl_apply_state(data->pincfg, PINCTRL_STATE_DEFAULT);
if (ret < 0 && ret != -ENOENT) {
return ret;
}
FLEXSPI_GetDefaultConfig(&flexspi_config);
flexspi_config.ahbConfig.enableAHBBufferable = data->ahb_bufferable;
flexspi_config.ahbConfig.enableAHBCachable = data->ahb_cacheable;
flexspi_config.ahbConfig.enableAHBPrefetch = data->ahb_prefetch;
flexspi_config.ahbConfig.enableReadAddressOpt = data->ahb_read_addr_opt;
#if !(defined(FSL_FEATURE_FLEXSPI_HAS_NO_MCR0_COMBINATIONEN) && \
FSL_FEATURE_FLEXSPI_HAS_NO_MCR0_COMBINATIONEN)
flexspi_config.enableCombination = data->combination_mode;
#endif
#if !(defined(FSL_FEATURE_FLEXSPI_HAS_NO_MCR2_SCKBDIFFOPT) && \
FSL_FEATURE_FLEXSPI_HAS_NO_MCR2_SCKBDIFFOPT)
flexspi_config.enableSckBDiffOpt = data->sck_differential_clock;
#endif
flexspi_config.rxSampleClock = data->rx_sample_clock;
#if defined(FSL_FEATURE_FLEXSPI_SUPPORT_SEPERATE_RXCLKSRC_PORTB) && \
FSL_FEATURE_FLEXSPI_SUPPORT_SEPERATE_RXCLKSRC_PORTB
flexspi_config.rxSampleClockPortB = data->rx_sample_clock_b;
#if defined(FSL_FEATURE_FLEXSPI_SUPPORT_RXCLKSRC_DIFF) && \
FSL_FEATURE_FLEXSPI_SUPPORT_RXCLKSRC_DIFF
if (flexspi_config.rxSampleClock != flexspi_config.rxSampleClockPortB) {
flexspi_config.rxSampleClockDiff = true;
}
#endif
#endif
/* Configure AHB RX buffers, if any configuration settings are present */
__ASSERT(data->buf_cfg_cnt < FSL_FEATURE_FLEXSPI_AHB_BUFFER_COUNT,
"Maximum RX buffer configuration count exceeded");
for (i = 0; i < data->buf_cfg_cnt; i++) {
/* Should AHB prefetch up to buffer size? */
flexspi_config.ahbConfig.buffer[i].enablePrefetch = data->buf_cfg[i].prefetch;
/* AHB access priority (used for suspending control of AHB prefetching )*/
flexspi_config.ahbConfig.buffer[i].priority = data->buf_cfg[i].priority;
/* AHB master index, SOC specific */
flexspi_config.ahbConfig.buffer[i].masterIndex = data->buf_cfg[i].master_id;
/* RX buffer allocation (total available buffer space is instance/SOC specific) */
flexspi_config.ahbConfig.buffer[i].bufferSize = data->buf_cfg[i].buf_size;
}
if (memc_flexspi_is_running_xip(dev)) {
/* Save flash sizes- FlexSPI init will reset them */
for (i = 0; i < kFLEXSPI_PortCount; i++) {
flash_sizes[i] = data->base->FLSHCR0[i];
}
}
FLEXSPI_Init(data->base, &flexspi_config);
if (memc_flexspi_is_running_xip(dev)) {
/* Restore flash sizes */
for (i = 0; i < kFLEXSPI_PortCount; i++) {
data->base->FLSHCR0[i] = flash_sizes[i];
}
/* Reenable FLEXSPI module */
data->base->MCR0 &= ~FLEXSPI_MCR0_MDIS_MASK;
}
return 0;
}
#ifdef CONFIG_PM_DEVICE
static int memc_flexspi_pm_action(const struct device *dev, enum pm_device_action action)
{
struct memc_flexspi_data *data = dev->data;
int ret;
switch (action) {
case PM_DEVICE_ACTION_RESUME:
ret = pinctrl_apply_state(data->pincfg, PINCTRL_STATE_DEFAULT);
if (ret < 0 && ret != -ENOENT) {
return ret;
}
break;
case PM_DEVICE_ACTION_SUSPEND:
ret = pinctrl_apply_state(data->pincfg, PINCTRL_STATE_SLEEP);
if (ret < 0 && ret != -ENOENT) {
return ret;
}
break;
default:
return -ENOTSUP;
}
return 0;
}
#endif
#if defined(FSL_FEATURE_FLEXSPI_SUPPORT_SEPERATE_RXCLKSRC_PORTB) && \
FSL_FEATURE_FLEXSPI_SUPPORT_SEPERATE_RXCLKSRC_PORTB
#define MEMC_FLEXSPI_RXCLK_B(inst) .rx_sample_clock_b = DT_INST_PROP(inst, rx_clock_source_b),
#else
#define MEMC_FLEXSPI_RXCLK_B(inst)
#endif
#if defined(CONFIG_XIP) && defined(CONFIG_FLASH_MCUX_FLEXSPI_XIP)
/* Checks if image flash base address is in the FlexSPI AHB base region */
#define MEMC_FLEXSPI_CFG_XIP(node_id) \
((CONFIG_FLASH_BASE_ADDRESS) >= DT_REG_ADDR_BY_IDX(node_id, 1)) && \
((CONFIG_FLASH_BASE_ADDRESS) < (DT_REG_ADDR_BY_IDX(node_id, 1) + \
DT_REG_SIZE_BY_IDX(node_id, 1)))
#else
#define MEMC_FLEXSPI_CFG_XIP(node_id) false
#endif
#define MEMC_FLEXSPI(n) \
PINCTRL_DT_INST_DEFINE(n); \
static uint16_t buf_cfg_##n[] = \
DT_INST_PROP_OR(n, rx_buffer_config, {0}); \
\
static struct memc_flexspi_data \
memc_flexspi_data_##n = { \
.base = (FLEXSPI_Type *) DT_INST_REG_ADDR(n), \
.xip = MEMC_FLEXSPI_CFG_XIP(DT_DRV_INST(n)), \
.ahb_base = (uint8_t *) DT_INST_REG_ADDR_BY_IDX(n, 1), \
.ahb_bufferable = DT_INST_PROP(n, ahb_bufferable), \
.ahb_cacheable = DT_INST_PROP(n, ahb_cacheable), \
.ahb_prefetch = DT_INST_PROP(n, ahb_prefetch), \
.ahb_read_addr_opt = DT_INST_PROP(n, ahb_read_addr_opt),\
.combination_mode = DT_INST_PROP(n, combination_mode), \
.sck_differential_clock = DT_INST_PROP(n, sck_differential_clock), \
.rx_sample_clock = DT_INST_PROP(n, rx_clock_source), \
MEMC_FLEXSPI_RXCLK_B(n) \
.buf_cfg = (struct memc_flexspi_buf_cfg *)buf_cfg_##n, \
.buf_cfg_cnt = sizeof(buf_cfg_##n) / \
sizeof(struct memc_flexspi_buf_cfg), \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t) \
DT_INST_CLOCKS_CELL(n, name), \
}; \
\
PM_DEVICE_DT_INST_DEFINE(n, memc_flexspi_pm_action); \
\
DEVICE_DT_INST_DEFINE(n, \
memc_flexspi_init, \
PM_DEVICE_DT_INST_GET(n), \
&memc_flexspi_data_##n, \
NULL, \
POST_KERNEL, \
CONFIG_MEMC_MCUX_FLEXSPI_INIT_PRIORITY, \
NULL);
DT_INST_FOREACH_STATUS_OKAY(MEMC_FLEXSPI)