zephyr/drivers/ieee802154/ieee802154_mcr20a.c
Fin Maaß 9e8e21b36f drivers: ieee802154: use sys_rand_get directly
use sys_rand_get() directly.

Signed-off-by: Fin Maaß <f.maass@vogl-electronic.com>
2024-04-05 12:28:46 +02:00

1477 lines
33 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* ieee802154_mcr20a.c - NXP MCR20A driver */
#define DT_DRV_COMPAT nxp_mcr20a
/*
* Copyright (c) 2017 PHYTEC Messtechnik GmbH
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_MODULE_NAME ieee802154_mcr20a
#define LOG_LEVEL CONFIG_IEEE802154_DRIVER_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(LOG_MODULE_NAME);
#include <errno.h>
#include <zephyr/kernel.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/debug/stack.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/net/net_if.h>
#include <zephyr/net/net_pkt.h>
#include <zephyr/sys/byteorder.h>
#include <string.h>
#include <zephyr/random/random.h>
#include <zephyr/debug/stack.h>
#include <zephyr/drivers/gpio.h>
#include <zephyr/net/ieee802154_radio.h>
#include "ieee802154_mcr20a.h"
#include "MCR20Overwrites.h"
/*
* max. TX duration = (PR + SFD + FLI + PDU + FCS)
* + RX_warmup + cca + TX_warmup
* TODO: Calculate the value from frame length.
* Invalid for the SLOTTED mode.
*/
#define _MAX_PKT_TX_DURATION (133 + 9 + 8 + 9)
#if LOG_LEVEL == LOG_LEVEL_DBG
/* Prevent timer overflow during LOG_* output */
#define _MACACKWAITDURATION (864 / 16 + 11625)
#define MCR20A_SEQ_SYNC_TIMEOUT (200)
#else
#define MCR20A_SEQ_SYNC_TIMEOUT (20)
#define _MACACKWAITDURATION (864 / 16) /* 864us * 62500Hz */
#endif
#define MCR20A_FCS_LENGTH (2)
#define MCR20A_PSDU_LENGTH (125)
#define MCR20A_GET_SEQ_STATE_RETRIES (3)
/* Values for the clock output (CLK_OUT) configuration */
#ifdef CONFIG_MCR20A_CLK_OUT_DISABLED
#define MCR20A_CLK_OUT_CONFIG (MCR20A_CLK_OUT_HIZ)
#elif CONFIG_MCR20A_CLK_OUT_32MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(0) | MCR20A_CLK_OUT_DS |\
MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_16MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(1) | MCR20A_CLK_OUT_DS |\
MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_8MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(2) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_4MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(3) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_1MHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(4) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_250KHZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(5) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_62500HZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(6) | MCR20A_CLK_OUT_EN)
#elif CONFIG_MCR20A_CLK_OUT_32768HZ
#define MCR20A_CLK_OUT_CONFIG (set_bits_clk_out_div(7) | MCR20A_CLK_OUT_EN)
#endif
#ifdef CONFIG_MCR20A_IS_PART_OF_KW2XD_SIP
#define PART_OF_KW2XD_SIP 1
#else
#define PART_OF_KW2XD_SIP 0
#endif
/* Values for the power mode (PM) configuration */
#define MCR20A_PM_HIBERNATE 0
#define MCR20A_PM_DOZE MCR20A_PWR_MODES_XTALEN
#define MCR20A_PM_IDLE (MCR20A_PWR_MODES_XTALEN |\
MCR20A_PWR_MODES_PMC_MODE)
#define MCR20A_PM_AUTODOZE (MCR20A_PWR_MODES_XTALEN |\
MCR20A_PWR_MODES_AUTODOZE)
/* Default settings for the device initialization */
#define MCR20A_DEFAULT_TX_POWER (0)
#define MCR20A_DEFAULT_CHANNEL (26)
/* RF TX power max/min values (dBm) */
#define MCR20A_OUTPUT_POWER_MAX (8)
#define MCR20A_OUTPUT_POWER_MIN (-35)
/* Lookup table for the Power Control register */
static const uint8_t pow_lt[44] = {
3, 4, 5, 6,
6, 7, 7, 8,
8, 9, 9, 10,
11, 11, 12, 13,
13, 14, 14, 15,
16, 16, 17, 18,
18, 19, 20, 20,
21, 21, 22, 23,
23, 24, 25, 25,
26, 27, 27, 28,
28, 29, 30, 31
};
/* PLL integer and fractional lookup tables
*
* Fc = 2405 + 5(k - 11) , k = 11,12,...,26
*
* Equation for PLL frequency, MKW2xD Reference Manual, p.255 :
* F = ((PLL_INT0 + 64) + (PLL_FRAC0/65536))32MHz
*
*/
static const uint8_t pll_int_lt[16] = {
11, 11, 11, 11,
11, 11, 12, 12,
12, 12, 12, 12,
13, 13, 13, 13
};
static const uint16_t pll_frac_lt[16] = {
10240, 20480, 30720, 40960,
51200, 61440, 6144, 16384,
26624, 36864, 47104, 57344,
2048, 12288, 22528, 32768
};
#define z_usleep(usec) k_busy_wait(usec)
/* Read direct (dreg is true) or indirect register (dreg is false) */
uint8_t z_mcr20a_read_reg(const struct device *dev, bool dreg, uint8_t addr)
{
const struct mcr20a_config *config = dev->config;
uint8_t cmd_buf[3] = {
dreg ? (MCR20A_REG_READ | addr) :
(MCR20A_IAR_INDEX | MCR20A_REG_WRITE),
dreg ? 0 : (addr | MCR20A_REG_READ),
0
};
uint8_t len = dreg ? 2 : 3;
const struct spi_buf buf = {
.buf = cmd_buf,
.len = len
};
const struct spi_buf_set tx = {
.buffers = &buf,
.count = 1
};
const struct spi_buf_set rx = {
.buffers = &buf,
.count = 1
};
if (spi_transceive_dt(&config->bus, &tx, &rx) == 0) {
return cmd_buf[len - 1];
}
LOG_ERR("Failed");
return 0;
}
/* Write direct (dreg is true) or indirect register (dreg is false) */
bool z_mcr20a_write_reg(const struct device *dev, bool dreg, uint8_t addr,
uint8_t value)
{
const struct mcr20a_config *config = dev->config;
uint8_t cmd_buf[3] = {
dreg ? (MCR20A_REG_WRITE | addr) :
(MCR20A_IAR_INDEX | MCR20A_REG_WRITE),
dreg ? value : (addr | MCR20A_REG_WRITE),
dreg ? 0 : value
};
const struct spi_buf buf = {
.buf = cmd_buf,
.len = dreg ? 2 : 3
};
const struct spi_buf_set tx = {
.buffers = &buf,
.count = 1
};
return (spi_write_dt(&config->bus, &tx) == 0);
}
/* Write multiple bytes to direct or indirect register */
bool z_mcr20a_write_burst(const struct device *dev, bool dreg, uint16_t addr,
uint8_t *data_buf, uint8_t len)
{
const struct mcr20a_config *config = dev->config;
uint8_t cmd_buf[2] = {
dreg ? MCR20A_REG_WRITE | addr :
MCR20A_IAR_INDEX | MCR20A_REG_WRITE,
dreg ? 0 : addr | MCR20A_REG_WRITE
};
struct spi_buf bufs[2] = {
{
.buf = cmd_buf,
.len = dreg ? 1 : 2
},
{
.buf = data_buf,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = bufs,
.count = 2
};
return (spi_write_dt(&config->bus, &tx) == 0);
}
/* Read multiple bytes from direct or indirect register */
bool z_mcr20a_read_burst(const struct device *dev, bool dreg, uint16_t addr,
uint8_t *data_buf, uint8_t len)
{
const struct mcr20a_config *config = dev->config;
uint8_t cmd_buf[2] = {
dreg ? MCR20A_REG_READ | addr :
MCR20A_IAR_INDEX | MCR20A_REG_WRITE,
dreg ? 0 : addr | MCR20A_REG_READ
};
struct spi_buf bufs[2] = {
{
.buf = cmd_buf,
.len = dreg ? 1 : 2
},
{
.buf = data_buf,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = bufs,
.count = 1
};
const struct spi_buf_set rx = {
.buffers = bufs,
.count = 2
};
return (spi_transceive_dt(&config->bus, &tx, &rx) == 0);
}
/* Mask (msk is true) or unmask all interrupts from asserting IRQ_B */
static bool mcr20a_mask_irqb(const struct device *dev, bool msk)
{
uint8_t ctrl4 = read_reg_phy_ctrl4(dev);
if (msk) {
ctrl4 |= MCR20A_PHY_CTRL4_TRCV_MSK;
} else {
ctrl4 &= ~MCR20A_PHY_CTRL4_TRCV_MSK;
}
return write_reg_phy_ctrl4(dev, ctrl4);
}
/** Set an timeout value for the given compare register */
static int mcr20a_timer_set(const struct device *dev,
uint8_t cmp_reg,
uint32_t timeout)
{
uint32_t now = 0U;
uint32_t next;
bool retval;
if (!read_burst_event_timer(dev, (uint8_t *)&now)) {
goto error;
}
now = sys_le32_to_cpu(now);
next = now + timeout;
LOG_DBG("now: 0x%x set 0x%x", now, next);
next = sys_cpu_to_le32(next);
switch (cmp_reg) {
case 1:
retval = write_burst_t1cmp(dev, (uint8_t *)&next);
break;
case 2:
retval = write_burst_t2cmp(dev, (uint8_t *)&next);
break;
case 3:
retval = write_burst_t3cmp(dev, (uint8_t *)&next);
break;
case 4:
retval = write_burst_t4cmp(dev, (uint8_t *)&next);
break;
default:
goto error;
}
if (!retval) {
goto error;
}
return 0;
error:
LOG_ERR("Failed");
return -EIO;
}
static int mcr20a_timer_init(const struct device *dev, uint8_t tb)
{
uint8_t buf[3] = {0, 0, 0};
uint8_t ctrl4;
if (!write_reg_tmr_prescale(dev,
set_bits_tmr_prescale(tb))) {
goto error;
}
if (!write_burst_t1cmp(dev, buf)) {
goto error;
}
ctrl4 = read_reg_phy_ctrl4(dev);
ctrl4 |= MCR20A_PHY_CTRL4_TMRLOAD;
if (!write_reg_phy_ctrl4(dev, ctrl4)) {
goto error;
}
LOG_DBG("done, timebase %d", tb);
return 0;
error:
LOG_ERR("Failed");
return -EIO;
}
/* Set Timer Comparator 4 */
static int mcr20a_t4cmp_set(const struct device *dev,
uint32_t timeout)
{
uint8_t irqsts3;
uint8_t ctrl3;
if (mcr20a_timer_set(dev, 4, timeout)) {
goto error;
}
/* enable and clear irq for the timer 4 */
irqsts3 = read_reg_irqsts3(dev);
irqsts3 &= ~MCR20A_IRQSTS3_TMR4MSK;
irqsts3 |= MCR20A_IRQSTS3_TMR4IRQ;
if (!write_reg_irqsts3(dev, irqsts3)) {
goto error;
}
ctrl3 = read_reg_phy_ctrl3(dev);
ctrl3 |= MCR20A_PHY_CTRL3_TMR4CMP_EN;
if (!write_reg_phy_ctrl3(dev, ctrl3)) {
goto error;
}
return 0;
error:
LOG_DBG("Failed");
return -EIO;
}
/* Clear Timer Comparator 4 */
static int mcr20a_t4cmp_clear(const struct device *dev)
{
uint8_t irqsts3;
uint8_t ctrl3;
ctrl3 = read_reg_phy_ctrl3(dev);
ctrl3 &= ~MCR20A_PHY_CTRL3_TMR4CMP_EN;
if (!write_reg_phy_ctrl3(dev, ctrl3)) {
goto error;
}
irqsts3 = read_reg_irqsts3(dev);
irqsts3 |= MCR20A_IRQSTS3_TMR4IRQ;
if (!write_reg_irqsts3(dev, irqsts3)) {
goto error;
}
return 0;
error:
LOG_DBG("Failed");
return -EIO;
}
static inline void xcvseq_wait_until_idle(const struct device *dev)
{
uint8_t state;
uint8_t retries = MCR20A_GET_SEQ_STATE_RETRIES;
do {
state = read_reg_seq_state(dev);
retries--;
} while ((state & MCR20A_SEQ_STATE_MASK) && retries);
if (state & MCR20A_SEQ_STATE_MASK) {
LOG_ERR("Timeout");
}
}
static inline int mcr20a_abort_sequence(const struct device *dev,
bool force)
{
uint8_t ctrl1;
ctrl1 = read_reg_phy_ctrl1(dev);
LOG_DBG("CTRL1 0x%02x", ctrl1);
if (((ctrl1 & MCR20A_PHY_CTRL1_XCVSEQ_MASK) == MCR20A_XCVSEQ_TX) ||
((ctrl1 & MCR20A_PHY_CTRL1_XCVSEQ_MASK) == MCR20A_XCVSEQ_TX_RX)) {
if (!force) {
return -1;
}
}
/* Abort ongoing sequence */
ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
if (!write_reg_phy_ctrl1(dev, ctrl1)) {
return -1;
}
xcvseq_wait_until_idle(dev);
/* Clear relevant interrupt flags */
if (!write_reg_irqsts1(dev, MCR20A_IRQSTS1_IRQ_MASK)) {
return -1;
}
return 0;
}
/* Initiate a (new) Transceiver Sequence */
static inline int mcr20a_set_sequence(const struct device *dev,
uint8_t seq)
{
uint8_t ctrl1 = 0U;
seq = set_bits_phy_ctrl1_xcvseq(seq);
ctrl1 = read_reg_phy_ctrl1(dev);
ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
if ((seq == MCR20A_XCVSEQ_TX_RX) &&
(ctrl1 & MCR20A_PHY_CTRL1_RXACKRQD)) {
/* RXACKRQD enabled, timer should be set. */
mcr20a_t4cmp_set(dev, _MACACKWAITDURATION +
_MAX_PKT_TX_DURATION);
}
ctrl1 |= seq;
if (!write_reg_phy_ctrl1(dev, ctrl1)) {
return -EIO;
}
return 0;
}
#define DIV_ROUND_CLOSEST_WITH_OPPOSITE_SIGNS(n, d) (((n) - (d)/2)/(d))
static inline int16_t mcr20a_get_rssi(uint8_t lqi)
{
/* Calculate the RSSI (Received Signal Strength Indicator)
* in dBm from the LQI (Link Quality Indicator) value.
*
* There are two different equations for the RF value (which
* we use as the RSSI value) in the reference manuals:
*
* RF = (LQI 286.6) / 2.69333 (MKW2xD Reference Manual)
* RF = (LQI 295.4) / 2.84 (MCR20A Reference Manual)
*
* The second is derived from empiric values (see Figure 3-10)
* so we use that one.
*
* Since we want to avoid floating point computation and
* the result needs to be rounded to a signed integer value
* anyways, we take the numerator and denominator times 100
* each and round the end result of the division:
* RF = (LQI 295.4) / 2.84
* = (100 * (LQI 295.4)) / (100 * 2.84)
* = (100 * LQI 29540) / 284
*/
int16_t numerator = ((int16_t)100 * lqi) - 29540; /* always negative */
return DIV_ROUND_CLOSEST_WITH_OPPOSITE_SIGNS(numerator, 284);
}
static inline uint8_t *get_mac(const struct device *dev)
{
struct mcr20a_context *mcr20a = dev->data;
sys_rand_get(mcr20a->mac_addr, sizeof(mcr20a->mac_addr));
mcr20a->mac_addr[0] = (mcr20a->mac_addr[0] & ~0x01) | 0x02;
return mcr20a->mac_addr;
}
static inline bool read_rxfifo_content(const struct device *dev,
struct net_buf *buf, uint8_t len)
{
const struct mcr20a_config *config = dev->config;
uint8_t cmd = MCR20A_BUF_READ;
struct spi_buf bufs[2] = {
{
.buf = &cmd,
.len = 1
},
{
.buf = buf->data,
.len = len
}
};
const struct spi_buf_set tx = {
.buffers = bufs,
.count = 1
};
const struct spi_buf_set rx = {
.buffers = bufs,
.count = 2
};
if (spi_transceive_dt(&config->bus, &tx, &rx) != 0) {
return false;
}
net_buf_add(buf, len);
return true;
}
static inline void mcr20a_rx(const struct device *dev, uint8_t len)
{
struct mcr20a_context *mcr20a = dev->data;
struct net_pkt *pkt = NULL;
uint8_t pkt_len;
uint16_t rssi;
uint8_t lqi;
pkt_len = len - MCR20A_FCS_LENGTH;
pkt = net_pkt_rx_alloc_with_buffer(mcr20a->iface, pkt_len,
AF_UNSPEC, 0, K_NO_WAIT);
if (!pkt) {
LOG_ERR("No buf available");
goto out;
}
if (!read_rxfifo_content(dev, pkt->buffer, pkt_len)) {
LOG_ERR("No content read");
goto out;
}
/* TODO: ieee802154_handle_ack() expects an ACK package. */
if (ieee802154_handle_ack(mcr20a->iface, pkt) == NET_OK) {
LOG_DBG("ACK packet handled");
goto out;
}
lqi = read_reg_lqi_value(dev);
net_pkt_set_ieee802154_lqi(pkt, lqi);
rssi = mcr20a_get_rssi(lqi);
net_pkt_set_ieee802154_rssi_dbm(pkt, rssi);
LOG_DBG("Caught a packet (%u) (LQI: %u, RSSI: %d)", pkt_len, lqi, rssi);
if (net_recv_data(mcr20a->iface, pkt) < 0) {
LOG_DBG("Packet dropped by NET stack");
goto out;
}
log_stack_usage(&mcr20a->mcr20a_rx_thread);
return;
out:
if (pkt) {
net_pkt_unref(pkt);
}
}
/*
* The function checks how the XCV sequence has been completed
* and sets the variable seq_retval accordingly. It returns true
* if a new sequence is to be set. This function is only to be called
* when a sequence has been completed.
*/
static inline bool irqsts1_event(const struct device *dev,
uint8_t *dregs)
{
struct mcr20a_context *mcr20a = dev->data;
uint8_t seq = dregs[MCR20A_PHY_CTRL1] & MCR20A_PHY_CTRL1_XCVSEQ_MASK;
uint8_t new_seq = MCR20A_XCVSEQ_RECEIVE;
bool retval = false;
switch (seq) {
case MCR20A_XCVSEQ_RECEIVE:
if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_RXIRQ)) {
if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_TXIRQ)) {
LOG_DBG("Finished RxSeq + TxAck");
} else {
LOG_DBG("Finished RxSeq");
}
mcr20a_rx(dev, dregs[MCR20A_RX_FRM_LEN]);
retval = true;
}
break;
case MCR20A_XCVSEQ_TX:
case MCR20A_XCVSEQ_TX_RX:
if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_CCAIRQ) {
if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_CCA) {
LOG_DBG("Finished CCA, CH busy");
atomic_set(&mcr20a->seq_retval, -EBUSY);
retval = true;
break;
}
}
if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_TXIRQ) {
atomic_set(&mcr20a->seq_retval, 0);
if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_RXIRQ)) {
LOG_DBG("Finished TxSeq + RxAck");
/* Got Ack, timer should be disabled. */
mcr20a_t4cmp_clear(dev);
} else {
LOG_DBG("Finished TxSeq");
}
retval = true;
}
break;
case MCR20A_XCVSEQ_CONTINUOUS_CCA:
case MCR20A_XCVSEQ_CCA:
if ((dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_CCAIRQ)) {
/* If CCCA, then timer should be disabled. */
/* mcr20a_t4cmp_clear(dev); */
if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_CCA) {
LOG_DBG("Finished CCA, CH busy");
atomic_set(&mcr20a->seq_retval, -EBUSY);
} else {
/**
* Assume that after the CCA,
* a transmit sequence follows and
* set here the sequence manager to Idle.
*/
LOG_DBG("Finished CCA, CH idle");
new_seq = MCR20A_XCVSEQ_IDLE;
atomic_set(&mcr20a->seq_retval, 0);
}
retval = true;
}
break;
case MCR20A_XCVSEQ_IDLE:
default:
LOG_ERR("SEQ triggered, but XCVSEQ is in the Idle state");
LOG_ERR("IRQSTS: 0x%02x", dregs[MCR20A_IRQSTS1]);
break;
}
dregs[MCR20A_PHY_CTRL1] &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
dregs[MCR20A_PHY_CTRL1] |= new_seq;
return retval;
}
/*
* Check the Timer Comparator IRQ register IRQSTS3.
* Currently we use only T4CMP to cancel the running sequence,
* usually the TR.
*/
static inline bool irqsts3_event(const struct device *dev,
uint8_t *dregs)
{
struct mcr20a_context *mcr20a = dev->data;
bool retval = false;
if (dregs[MCR20A_IRQSTS3] & MCR20A_IRQSTS3_TMR4IRQ) {
LOG_DBG("Sequence timeout, IRQSTSs 0x%02x 0x%02x 0x%02x",
dregs[MCR20A_IRQSTS1],
dregs[MCR20A_IRQSTS2],
dregs[MCR20A_IRQSTS3]);
atomic_set(&mcr20a->seq_retval, -EBUSY);
mcr20a_t4cmp_clear(dev);
dregs[MCR20A_PHY_CTRL1] &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
dregs[MCR20A_PHY_CTRL1] |= MCR20A_XCVSEQ_RECEIVE;
/* Clear all interrupts */
dregs[MCR20A_IRQSTS1] = MCR20A_IRQSTS1_IRQ_MASK;
retval = true;
} else {
LOG_ERR("IRQSTS3 contains untreated IRQs: 0x%02x",
dregs[MCR20A_IRQSTS3]);
}
return retval;
}
static void mcr20a_thread_main(void *p1, void *p2, void *p3)
{
ARG_UNUSED(p2);
ARG_UNUSED(p3);
const struct device *dev = p1;
struct mcr20a_context *mcr20a = dev->data;
uint8_t dregs[MCR20A_PHY_CTRL4 + 1];
bool set_new_seq;
uint8_t ctrl1 = 0U;
while (true) {
k_sem_take(&mcr20a->isr_sem, K_FOREVER);
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
set_new_seq = false;
if (!mcr20a_mask_irqb(dev, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto unmask_irqb;
}
/* Read the register from IRQSTS1 until CTRL4 */
if (!read_burst_irqsts1_ctrl4(dev, dregs)) {
LOG_ERR("Failed to read register");
goto unmask_irqb;
}
/* make backup from PHY_CTRL1 register */
ctrl1 = dregs[MCR20A_PHY_CTRL1];
if (dregs[MCR20A_IRQSTS3] & MCR20A_IRQSTS3_IRQ_MASK) {
set_new_seq = irqsts3_event(dev, dregs);
} else if (dregs[MCR20A_IRQSTS1] & MCR20A_IRQSTS1_SEQIRQ) {
set_new_seq = irqsts1_event(dev, dregs);
}
if (dregs[MCR20A_IRQSTS2] & MCR20A_IRQSTS2_IRQ_MASK) {
LOG_ERR("IRQSTS2 contains untreated IRQs: 0x%02x",
dregs[MCR20A_IRQSTS2]);
}
LOG_DBG("WB: 0x%02x | 0x%02x | 0x%02x",
dregs[MCR20A_IRQSTS1],
dregs[MCR20A_IRQSTS2],
dregs[MCR20A_IRQSTS3]);
/* Write back register, clear IRQs and set new sequence */
if (set_new_seq) {
/* Reset sequence manager */
ctrl1 &= ~MCR20A_PHY_CTRL1_XCVSEQ_MASK;
if (!write_reg_phy_ctrl1(dev, ctrl1)) {
LOG_ERR("Failed to reset SEQ manager");
}
xcvseq_wait_until_idle(dev);
if (!write_burst_irqsts1_ctrl1(dev, dregs)) {
LOG_ERR("Failed to write CTRL1");
}
} else {
if (!write_burst_irqsts1_irqsts3(dev, dregs)) {
LOG_ERR("Failed to write IRQSTS3");
}
}
unmask_irqb:
if (!mcr20a_mask_irqb(dev, false)) {
LOG_ERR("Failed to unmask IRQ_B");
}
k_mutex_unlock(&mcr20a->phy_mutex);
if (set_new_seq) {
k_sem_give(&mcr20a->seq_sync);
}
}
}
static inline void irqb_int_handler(const struct device *port,
struct gpio_callback *cb, uint32_t pins)
{
struct mcr20a_context *mcr20a = CONTAINER_OF(cb,
struct mcr20a_context,
irqb_cb);
k_sem_give(&mcr20a->isr_sem);
}
static void enable_irqb_interrupt(const struct device *dev,
bool enable)
{
const struct mcr20a_config *config = dev->config;
gpio_flags_t flags = enable
? GPIO_INT_EDGE_TO_ACTIVE
: GPIO_INT_DISABLE;
gpio_pin_interrupt_configure_dt(&config->irq_gpio, flags);
}
static inline void setup_gpio_callbacks(const struct device *dev)
{
const struct mcr20a_config *config = dev->config;
struct mcr20a_context *mcr20a = dev->data;
gpio_init_callback(&mcr20a->irqb_cb,
irqb_int_handler,
BIT(config->irq_gpio.pin));
gpio_add_callback(config->irq_gpio.port, &mcr20a->irqb_cb);
}
static int mcr20a_set_cca_mode(const struct device *dev, uint8_t mode)
{
uint8_t ctrl4;
ctrl4 = read_reg_phy_ctrl4(dev);
ctrl4 &= ~MCR20A_PHY_CTRL4_CCATYPE_MASK;
ctrl4 |= set_bits_phy_ctrl4_ccatype(mode);
if (!write_reg_phy_ctrl4(dev, ctrl4)) {
LOG_ERR("Failed");
return -EIO;
}
return 0;
}
static enum ieee802154_hw_caps mcr20a_get_capabilities(const struct device *dev)
{
return IEEE802154_HW_FCS | IEEE802154_HW_TX_RX_ACK |
IEEE802154_HW_RX_TX_ACK | IEEE802154_HW_FILTER;
}
/* Note: CCA before TX is enabled by default */
static int mcr20a_cca(const struct device *dev)
{
struct mcr20a_context *mcr20a = dev->data;
int retval;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!mcr20a_mask_irqb(dev, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto error;
}
k_sem_init(&mcr20a->seq_sync, 0, 1);
if (mcr20a_abort_sequence(dev, false)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
LOG_DBG("start CCA sequence");
if (mcr20a_set_sequence(dev, MCR20A_XCVSEQ_CCA)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
if (!mcr20a_mask_irqb(dev, false)) {
LOG_ERR("Failed to unmask IRQ_B");
goto error;
}
k_mutex_unlock(&mcr20a->phy_mutex);
retval = k_sem_take(&mcr20a->seq_sync,
K_MSEC(MCR20A_SEQ_SYNC_TIMEOUT));
if (retval) {
LOG_ERR("Timeout occurred, %d", retval);
return retval;
}
LOG_DBG("done");
return mcr20a->seq_retval;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
static int mcr20a_set_channel(const struct device *dev, uint16_t channel)
{
struct mcr20a_context *mcr20a = dev->data;
uint8_t buf[3];
uint8_t ctrl1;
int retval = -EIO;
if (channel < 11 || channel > 26) {
LOG_ERR("Unsupported channel %u", channel);
return channel < 11 ? -ENOTSUP : -EINVAL;
}
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!mcr20a_mask_irqb(dev, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto out;
}
ctrl1 = read_reg_phy_ctrl1(dev);
if (mcr20a_abort_sequence(dev, true)) {
LOG_ERR("Failed to reset XCV sequence");
goto out;
}
LOG_DBG("%u", channel);
channel -= 11U;
buf[0] = set_bits_pll_int0_val(pll_int_lt[channel]);
buf[1] = (uint8_t)pll_frac_lt[channel];
buf[2] = (uint8_t)(pll_frac_lt[channel] >> 8);
if (!write_burst_pll_int0(dev, buf)) {
LOG_ERR("Failed to set PLL");
goto out;
}
if (mcr20a_set_sequence(dev, ctrl1)) {
LOG_ERR("Failed to restore XCV sequence");
goto out;
}
retval = 0;
out:
if (!mcr20a_mask_irqb(dev, false)) {
LOG_ERR("Failed to unmask IRQ_B");
retval = -EIO;
}
k_mutex_unlock(&mcr20a->phy_mutex);
return retval;
}
static int mcr20a_set_pan_id(const struct device *dev, uint16_t pan_id)
{
struct mcr20a_context *mcr20a = dev->data;
pan_id = sys_le16_to_cpu(pan_id);
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!write_burst_pan_id(dev, (uint8_t *) &pan_id)) {
LOG_ERR("Failed");
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("0x%x", pan_id);
return 0;
}
static int mcr20a_set_short_addr(const struct device *dev,
uint16_t short_addr)
{
struct mcr20a_context *mcr20a = dev->data;
short_addr = sys_le16_to_cpu(short_addr);
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!write_burst_short_addr(dev, (uint8_t *) &short_addr)) {
LOG_ERR("Failed");
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("0x%x", short_addr);
return 0;
}
static int mcr20a_set_ieee_addr(const struct device *dev,
const uint8_t *ieee_addr)
{
struct mcr20a_context *mcr20a = dev->data;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!write_burst_ext_addr(dev, (void *)ieee_addr)) {
LOG_ERR("Failed");
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("IEEE address %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x",
ieee_addr[7], ieee_addr[6], ieee_addr[5], ieee_addr[4],
ieee_addr[3], ieee_addr[2], ieee_addr[1], ieee_addr[0]);
return 0;
}
static int mcr20a_filter(const struct device *dev,
bool set,
enum ieee802154_filter_type type,
const struct ieee802154_filter *filter)
{
LOG_DBG("Applying filter %u", type);
if (!set) {
return -ENOTSUP;
}
if (type == IEEE802154_FILTER_TYPE_IEEE_ADDR) {
return mcr20a_set_ieee_addr(dev, filter->ieee_addr);
} else if (type == IEEE802154_FILTER_TYPE_SHORT_ADDR) {
return mcr20a_set_short_addr(dev, filter->short_addr);
} else if (type == IEEE802154_FILTER_TYPE_PAN_ID) {
return mcr20a_set_pan_id(dev, filter->pan_id);
}
return -ENOTSUP;
}
static int mcr20a_set_txpower(const struct device *dev, int16_t dbm)
{
struct mcr20a_context *mcr20a = dev->data;
uint8_t pwr;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
LOG_DBG("%d", dbm);
if ((dbm > MCR20A_OUTPUT_POWER_MAX) ||
(dbm < MCR20A_OUTPUT_POWER_MIN)) {
goto error;
}
pwr = pow_lt[dbm - MCR20A_OUTPUT_POWER_MIN];
if (!write_reg_pa_pwr(dev, set_bits_pa_pwr_val(pwr))) {
goto error;
}
k_mutex_unlock(&mcr20a->phy_mutex);
return 0;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("Failed");
return -EIO;
}
static inline bool write_txfifo_content(const struct device *dev,
struct net_pkt *pkt,
struct net_buf *frag)
{
const struct mcr20a_config *config = dev->config;
size_t payload_len = frag->len;
uint8_t cmd_buf[2] = {
MCR20A_BUF_WRITE,
payload_len + MCR20A_FCS_LENGTH
};
const struct spi_buf bufs[2] = {
{
.buf = cmd_buf,
.len = 2
},
{
.buf = frag->data,
.len = payload_len
}
};
const struct spi_buf_set tx = {
.buffers = bufs,
.count = 2
};
if (payload_len > MCR20A_PSDU_LENGTH) {
LOG_ERR("Payload too long");
return 0;
}
return (spi_write_dt(&config->bus, &tx) == 0);
}
static int mcr20a_tx(const struct device *dev,
enum ieee802154_tx_mode mode,
struct net_pkt *pkt,
struct net_buf *frag)
{
struct mcr20a_context *mcr20a = dev->data;
uint8_t seq = ieee802154_is_ar_flag_set(frag) ? MCR20A_XCVSEQ_TX_RX :
MCR20A_XCVSEQ_TX;
int retval;
if (mode != IEEE802154_TX_MODE_DIRECT) {
NET_ERR("TX mode %d not supported", mode);
return -ENOTSUP;
}
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
LOG_DBG("%p (%u)", frag, frag->len);
if (!mcr20a_mask_irqb(dev, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto error;
}
if (mcr20a_abort_sequence(dev, false)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
if (!write_txfifo_content(dev, pkt, frag)) {
LOG_ERR("Did not write properly into TX FIFO");
goto error;
}
k_sem_init(&mcr20a->seq_sync, 0, 1);
if (mcr20a_set_sequence(dev, seq)) {
LOG_ERR("Cannot start transmission");
goto error;
}
if (!mcr20a_mask_irqb(dev, false)) {
LOG_ERR("Failed to unmask IRQ_B");
goto error;
}
k_mutex_unlock(&mcr20a->phy_mutex);
retval = k_sem_take(&mcr20a->seq_sync,
K_MSEC(MCR20A_SEQ_SYNC_TIMEOUT));
if (retval) {
LOG_ERR("Timeout occurred, %d", retval);
return retval;
}
LOG_DBG("done");
return mcr20a->seq_retval;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
static int mcr20a_start(const struct device *dev)
{
struct mcr20a_context *mcr20a = dev->data;
uint8_t timeout = 6U;
uint8_t status;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
enable_irqb_interrupt(dev, false);
if (!write_reg_pwr_modes(dev, MCR20A_PM_AUTODOZE)) {
LOG_ERR("Error starting MCR20A");
goto error;
}
do {
z_usleep(50);
timeout--;
status = read_reg_pwr_modes(dev);
} while (!(status & MCR20A_PWR_MODES_XTAL_READY) && timeout);
if (!(status & MCR20A_PWR_MODES_XTAL_READY)) {
LOG_ERR("Timeout, failed to wake up");
goto error;
}
/* Clear all interrupt flags */
write_reg_irqsts1(dev, MCR20A_IRQSTS1_IRQ_MASK);
write_reg_irqsts2(dev, MCR20A_IRQSTS2_IRQ_MASK);
write_reg_irqsts3(dev, MCR20A_IRQSTS3_IRQ_MASK |
MCR20A_IRQSTS3_TMR_MASK);
if (mcr20a_abort_sequence(dev, true)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
if (mcr20a_set_sequence(dev, MCR20A_XCVSEQ_RECEIVE)) {
LOG_ERR("Failed to set XCV sequence");
goto error;
}
enable_irqb_interrupt(dev, true);
if (!mcr20a_mask_irqb(dev, false)) {
LOG_ERR("Failed to unmask IRQ_B");
goto error;
}
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_DBG("started");
return 0;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
return -EIO;
}
static int mcr20a_stop(const struct device *dev)
{
struct mcr20a_context *mcr20a = dev->data;
uint8_t power_mode;
k_mutex_lock(&mcr20a->phy_mutex, K_FOREVER);
if (!mcr20a_mask_irqb(dev, true)) {
LOG_ERR("Failed to mask IRQ_B");
goto error;
}
if (mcr20a_abort_sequence(dev, true)) {
LOG_ERR("Failed to reset XCV sequence");
goto error;
}
enable_irqb_interrupt(dev, false);
if (PART_OF_KW2XD_SIP) {
power_mode = MCR20A_PM_DOZE;
} else {
power_mode = MCR20A_PM_HIBERNATE;
}
if (!write_reg_pwr_modes(dev, power_mode)) {
goto error;
}
LOG_DBG("stopped");
k_mutex_unlock(&mcr20a->phy_mutex);
return 0;
error:
k_mutex_unlock(&mcr20a->phy_mutex);
LOG_ERR("Error stopping MCR20A");
return -EIO;
}
/* driver-allocated attribute memory - constant across all driver instances */
IEEE802154_DEFINE_PHY_SUPPORTED_CHANNELS(drv_attr, 11, 26);
static int mcr20a_attr_get(const struct device *dev, enum ieee802154_attr attr,
struct ieee802154_attr_value *value)
{
ARG_UNUSED(dev);
return ieee802154_attr_get_channel_page_and_range(
attr, IEEE802154_ATTR_PHY_CHANNEL_PAGE_ZERO_OQPSK_2450_BPSK_868_915,
&drv_attr.phy_supported_channels, value);
}
static int mcr20a_update_overwrites(const struct device *dev)
{
if (!write_reg_overwrite_ver(dev, overwrites_direct[0].data)) {
goto error;
}
for (uint8_t i = 0;
i < sizeof(overwrites_indirect) / sizeof(overwrites_t);
i++) {
if (!z_mcr20a_write_reg(dev, false,
overwrites_indirect[i].address,
overwrites_indirect[i].data)) {
goto error;
}
}
return 0;
error:
LOG_ERR("Error update overwrites");
return -EIO;
}
static int power_on_and_setup(const struct device *dev)
{
const struct mcr20a_config *config = dev->config;
uint8_t timeout = 6U;
int pin;
uint8_t tmp = 0U;
if (!PART_OF_KW2XD_SIP) {
gpio_pin_set_dt(&config->reset_gpio, 1);
z_usleep(150);
gpio_pin_set_dt(&config->reset_gpio, 0);
do {
z_usleep(50);
timeout--;
pin = gpio_pin_get_dt(&config->irq_gpio);
} while (pin > 0 && timeout);
if (pin) {
LOG_ERR("Timeout, failed to get WAKE IRQ");
return -EIO;
}
}
tmp = MCR20A_CLK_OUT_CONFIG | MCR20A_CLK_OUT_EXTEND;
write_reg_clk_out_ctrl(dev, tmp);
if (read_reg_clk_out_ctrl(dev) != tmp) {
LOG_ERR("Failed to get device up");
return -EIO;
}
/* Clear all interrupt flags */
write_reg_irqsts1(dev, MCR20A_IRQSTS1_IRQ_MASK);
write_reg_irqsts2(dev, MCR20A_IRQSTS2_IRQ_MASK);
write_reg_irqsts3(dev, MCR20A_IRQSTS3_IRQ_MASK |
MCR20A_IRQSTS3_TMR_MASK);
mcr20a_update_overwrites(dev);
mcr20a_timer_init(dev, MCR20A_TIMEBASE_62500HZ);
mcr20a_set_txpower(dev, MCR20A_DEFAULT_TX_POWER);
mcr20a_set_channel(dev, MCR20A_DEFAULT_CHANNEL);
mcr20a_set_cca_mode(dev, 1);
write_reg_rx_wtr_mark(dev, 8);
/* Configure PHY behaviour */
tmp = MCR20A_PHY_CTRL1_CCABFRTX |
MCR20A_PHY_CTRL1_AUTOACK |
MCR20A_PHY_CTRL1_RXACKRQD;
write_reg_phy_ctrl1(dev, tmp);
/* Enable Sequence-end interrupt */
tmp = MCR20A_PHY_CTRL2_SEQMSK;
write_reg_phy_ctrl2(dev, ~tmp);
setup_gpio_callbacks(dev);
return 0;
}
static inline int configure_gpios(const struct device *dev)
{
const struct mcr20a_config *config = dev->config;
/* setup gpio for the modem interrupt */
if (!gpio_is_ready_dt(&config->irq_gpio)) {
LOG_ERR("IRQ GPIO device not ready");
return -ENODEV;
}
gpio_pin_configure_dt(&config->irq_gpio, GPIO_INPUT);
if (!PART_OF_KW2XD_SIP) {
/* setup gpio for the modems reset */
if (!gpio_is_ready_dt(&config->reset_gpio)) {
LOG_ERR("Reset GPIO device not ready");
return -EINVAL;
}
gpio_pin_configure_dt(&config->reset_gpio, GPIO_OUTPUT_ACTIVE);
}
return 0;
}
static int mcr20a_init(const struct device *dev)
{
const struct mcr20a_config *config = dev->config;
struct mcr20a_context *mcr20a = dev->data;
k_mutex_init(&mcr20a->phy_mutex);
k_sem_init(&mcr20a->isr_sem, 0, 1);
LOG_DBG("\nInitialize MCR20A Transceiver\n");
if (configure_gpios(dev) != 0) {
LOG_ERR("Configuring GPIOS failed");
return -EIO;
}
if (!spi_is_ready_dt(&config->bus)) {
LOG_ERR("Configuring SPI failed");
return -EIO;
}
LOG_DBG("GPIO and SPI configured");
if (power_on_and_setup(dev) != 0) {
LOG_ERR("Configuring MCR20A failed");
return -EIO;
}
k_thread_create(&mcr20a->mcr20a_rx_thread, mcr20a->mcr20a_rx_stack,
CONFIG_IEEE802154_MCR20A_RX_STACK_SIZE,
mcr20a_thread_main,
(void *)dev, NULL, NULL, K_PRIO_COOP(2), 0, K_NO_WAIT);
k_thread_name_set(&mcr20a->mcr20a_rx_thread, "mcr20a_rx");
return 0;
}
static void mcr20a_iface_init(struct net_if *iface)
{
const struct device *dev = net_if_get_device(iface);
struct mcr20a_context *mcr20a = dev->data;
uint8_t *mac = get_mac(dev);
net_if_set_link_addr(iface, mac, 8, NET_LINK_IEEE802154);
mcr20a->iface = iface;
ieee802154_init(iface);
LOG_DBG("done");
}
static const struct mcr20a_config mcr20a_config = {
.bus = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0),
.irq_gpio = GPIO_DT_SPEC_INST_GET(0, irqb_gpios),
.reset_gpio = GPIO_DT_SPEC_INST_GET(0, reset_gpios),
};
static struct mcr20a_context mcr20a_context_data;
static const struct ieee802154_radio_api mcr20a_radio_api = {
.iface_api.init = mcr20a_iface_init,
.get_capabilities = mcr20a_get_capabilities,
.cca = mcr20a_cca,
.set_channel = mcr20a_set_channel,
.filter = mcr20a_filter,
.set_txpower = mcr20a_set_txpower,
.start = mcr20a_start,
.stop = mcr20a_stop,
.tx = mcr20a_tx,
.attr_get = mcr20a_attr_get,
};
#if defined(CONFIG_IEEE802154_RAW_MODE)
DEVICE_DT_INST_DEFINE(0, mcr20a_init, NULL, &mcr20a_context_data,
&mcr20a_config, POST_KERNEL,
CONFIG_IEEE802154_MCR20A_INIT_PRIO, &mcr20a_radio_api);
#else
NET_DEVICE_DT_INST_DEFINE(0, mcr20a_init, NULL, &mcr20a_context_data,
&mcr20a_config, CONFIG_IEEE802154_MCR20A_INIT_PRIO,
&mcr20a_radio_api, IEEE802154_L2,
NET_L2_GET_CTX_TYPE(IEEE802154_L2),
MCR20A_PSDU_LENGTH);
#endif