zephyr/drivers/clock_control/clock_stm32_ll_u5.c
Kevin ORourke 9bf0a24f2e drivers: clock_control: stm32: clock_control_on
Make clock_control_on for STM32 behave the same as the HAL,
delaying after enabling peripheral clocks. Otherwise it may return
before the clock is actually enabled, causing subsequent writes to
peripheral registers to be silently ignored.

Signed-off-by: Kevin ORourke <kevin.orourke@ferroamp.se>
2024-03-25 09:31:54 +01:00

886 lines
24 KiB
C

/*
*
* Copyright (c) 2021 Linaro Limited
* Copyright (c) 2022 Thomas Stranger
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <stm32_ll_bus.h>
#include <stm32_ll_pwr.h>
#include <stm32_ll_rcc.h>
#include <stm32_ll_utils.h>
#include <stm32_ll_system.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/clock_control/stm32_clock_control.h>
/* Macros to fill up prescaler values */
#define z_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v
#define ahb_prescaler(v) z_ahb_prescaler(v)
#define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v
#define apb1_prescaler(v) z_apb1_prescaler(v)
#define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v
#define apb2_prescaler(v) z_apb2_prescaler(v)
#define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v
#define apb3_prescaler(v) z_apb3_prescaler(v)
#define PLL1_ID 1
#define PLL2_ID 2
#define PLL3_ID 3
static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler)
{
return clock / prescaler;
}
static uint32_t get_msis_frequency(void)
{
return __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(),
((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ?
LL_RCC_MSIS_GetRange() :
LL_RCC_MSIS_GetRangeAfterStandby()));
}
__unused
/** @brief returns the pll source frequency of given pll_id */
static uint32_t get_pllsrc_frequency(size_t pll_id)
{
if ((IS_ENABLED(STM32_PLL_SRC_HSI) && pll_id == PLL1_ID) ||
(IS_ENABLED(STM32_PLL2_SRC_HSI) && pll_id == PLL2_ID) ||
(IS_ENABLED(STM32_PLL3_SRC_HSI) && pll_id == PLL3_ID)) {
return STM32_HSI_FREQ;
} else if ((IS_ENABLED(STM32_PLL_SRC_HSE) && pll_id == PLL1_ID) ||
(IS_ENABLED(STM32_PLL2_SRC_HSE) && pll_id == PLL2_ID) ||
(IS_ENABLED(STM32_PLL3_SRC_HSE) && pll_id == PLL3_ID)) {
return STM32_HSE_FREQ;
} else if ((IS_ENABLED(STM32_PLL_SRC_MSIS) && pll_id == PLL1_ID) ||
(IS_ENABLED(STM32_PLL2_SRC_MSIS) && pll_id == PLL2_ID) ||
(IS_ENABLED(STM32_PLL3_SRC_MSIS) && pll_id == PLL3_ID)) {
return get_msis_frequency();
}
__ASSERT(0, "No PLL Source configured");
return 0;
}
static uint32_t get_startup_frequency(void)
{
switch (LL_RCC_GetSysClkSource()) {
case LL_RCC_SYS_CLKSOURCE_STATUS_MSIS:
return get_msis_frequency();
case LL_RCC_SYS_CLKSOURCE_STATUS_HSI:
return STM32_HSI_FREQ;
case LL_RCC_SYS_CLKSOURCE_STATUS_HSE:
return STM32_HSE_FREQ;
case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1:
return get_pllsrc_frequency(PLL1_ID);
default:
__ASSERT(0, "Unexpected startup freq");
return 0;
}
}
__unused
static uint32_t get_pllout_frequency(uint32_t pllsrc_freq,
int pllm_div,
int plln_mul,
int pllout_div)
{
__ASSERT_NO_MSG(pllm_div && pllout_div);
return (pllsrc_freq / pllm_div) * plln_mul / pllout_div;
}
static uint32_t get_sysclk_frequency(void)
{
#if defined(STM32_SYSCLK_SRC_PLL)
return get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
#elif defined(STM32_SYSCLK_SRC_MSIS)
return get_msis_frequency();
#elif defined(STM32_SYSCLK_SRC_HSE)
return STM32_HSE_FREQ;
#elif defined(STM32_SYSCLK_SRC_HSI)
return STM32_HSI_FREQ;
#else
__ASSERT(0, "No SYSCLK Source configured");
return 0;
#endif
}
/** @brief Verifies clock is part of active clock configuration */
static int enabled_clock(uint32_t src_clk)
{
if ((src_clk == STM32_SRC_SYSCLK) ||
((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) ||
((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) ||
+ ((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) ||
((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) ||
((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) ||
((src_clk == STM32_SRC_MSIS) && IS_ENABLED(STM32_MSIS_ENABLED)) ||
((src_clk == STM32_SRC_MSIK) && IS_ENABLED(STM32_MSIK_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) ||
((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) {
return 0;
}
return -ENOTSUP;
}
static inline int stm32_clock_control_on(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
volatile int temp;
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attemp to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
/* Delay after enabling the clock, to allow it to become active */
temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus);
UNUSED(temp);
return 0;
}
static inline int stm32_clock_control_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
ARG_UNUSED(dev);
if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) {
/* Attemp to toggle a wrong periph clock bit */
return -ENOTSUP;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus,
pclken->enr);
return 0;
}
static inline int stm32_clock_control_configure(const struct device *dev,
clock_control_subsys_t sub_system,
void *data)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system);
int err;
ARG_UNUSED(dev);
ARG_UNUSED(data);
err = enabled_clock(pclken->bus);
if (err < 0) {
/* Attempt to configure a src clock not available or not valid */
return err;
}
sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr),
STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr));
return 0;
}
static int stm32_clock_control_get_subsys_rate(const struct device *dev,
clock_control_subsys_t sys,
uint32_t *rate)
{
struct stm32_pclken *pclken = (struct stm32_pclken *)(sys);
/*
* Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler)
* SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC
* since it will be updated after clock configuration and hence
* more likely to contain actual clock speed
*/
uint32_t ahb_clock = SystemCoreClock;
uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER);
uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER);
uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_APB3_PRESCALER);
ARG_UNUSED(dev);
switch (pclken->bus) {
case STM32_CLOCK_BUS_AHB1:
case STM32_CLOCK_BUS_AHB2:
case STM32_CLOCK_BUS_AHB2_2:
case STM32_CLOCK_BUS_AHB3:
*rate = ahb_clock;
break;
case STM32_CLOCK_BUS_APB1:
case STM32_CLOCK_BUS_APB1_2:
*rate = apb1_clock;
break;
case STM32_CLOCK_BUS_APB2:
*rate = apb2_clock;
break;
case STM32_CLOCK_BUS_APB3:
*rate = apb3_clock;
break;
case STM32_SRC_SYSCLK:
*rate = get_sysclk_frequency();
break;
#if defined(STM32_HSI_ENABLED)
case STM32_SRC_HSI16:
*rate = STM32_HSI_FREQ;
break;
#endif /* STM32_HSI_ENABLED */
#if defined(STM32_MSIS_ENABLED)
case STM32_SRC_MSIS:
*rate = get_msis_frequency();
break;
#endif /* STM32_MSIS_ENABLED */
#if defined(STM32_MSIK_ENABLED)
case STM32_SRC_MSIK:
*rate = __LL_RCC_CALC_MSIK_FREQ(LL_RCC_MSIRANGESEL_RUN,
STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos);
break;
#endif /* STM32_MSIK_ENABLED */
#if defined(STM32_HSE_ENABLED)
case STM32_SRC_HSE:
*rate = STM32_HSE_FREQ;
break;
#endif /* STM32_HSE_ENABLED */
#if defined(STM32_LSE_ENABLED)
case STM32_SRC_LSE:
*rate = STM32_LSE_FREQ;
break;
#endif /* STM32_LSE_ENABLED */
#if defined(STM32_LSI_ENABLED)
case STM32_SRC_LSI:
*rate = STM32_LSI_FREQ;
break;
#endif /* STM32_LSI_ENABLED */
#if defined(STM32_HSI48_ENABLED)
case STM32_SRC_HSI48:
*rate = STM32_HSI48_FREQ;
break;
#endif /* STM32_HSI48_ENABLED */
#if defined(STM32_PLL_ENABLED)
case STM32_SRC_PLL1_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_P_DIVISOR);
break;
case STM32_SRC_PLL1_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_Q_DIVISOR);
break;
case STM32_SRC_PLL1_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID),
STM32_PLL_M_DIVISOR,
STM32_PLL_N_MULTIPLIER,
STM32_PLL_R_DIVISOR);
break;
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
case STM32_SRC_PLL2_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_P_DIVISOR);
break;
case STM32_SRC_PLL2_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_Q_DIVISOR);
break;
case STM32_SRC_PLL2_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID),
STM32_PLL2_M_DIVISOR,
STM32_PLL2_N_MULTIPLIER,
STM32_PLL2_R_DIVISOR);
break;
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
case STM32_SRC_PLL3_P:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_P_DIVISOR);
break;
case STM32_SRC_PLL3_Q:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_Q_DIVISOR);
break;
case STM32_SRC_PLL3_R:
*rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID),
STM32_PLL3_M_DIVISOR,
STM32_PLL3_N_MULTIPLIER,
STM32_PLL3_R_DIVISOR);
break;
#endif /* STM32_PLL3_ENABLED */
default:
return -ENOTSUP;
}
return 0;
}
static struct clock_control_driver_api stm32_clock_control_api = {
.on = stm32_clock_control_on,
.off = stm32_clock_control_off,
.get_rate = stm32_clock_control_get_subsys_rate,
.configure = stm32_clock_control_configure,
};
__unused
static int get_vco_input_range(uint32_t m_div, uint32_t *range, size_t pll_id)
{
uint32_t vco_freq;
vco_freq = get_pllsrc_frequency(pll_id) / m_div;
if (MHZ(4) <= vco_freq && vco_freq <= MHZ(8)) {
*range = LL_RCC_PLLINPUTRANGE_4_8;
} else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) {
*range = LL_RCC_PLLINPUTRANGE_8_16;
} else {
return -ERANGE;
}
return 0;
}
static void set_regu_voltage(uint32_t hclk_freq)
{
if (hclk_freq < MHZ(25)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE4);
} else if (hclk_freq < MHZ(55)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE3);
} else if (hclk_freq < MHZ(110)) {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2);
} else {
LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1);
}
while (LL_PWR_IsActiveFlag_VOS() == 0) {
}
}
#if defined(STM32_PLL_ENABLED)
/*
* Dynamic voltage scaling:
* Enable the Booster mode before enabling then PLL for sysclock above 55MHz
* The goal of this function is to set the epod prescaler, so that epod clock freq
* is between 4MHz and 16MHz.
* Up to now only MSI as PLL1 source clock can be > 16MHz, requiring a epod prescaler > 1
* For HSI16, epod prescaler is default (div1, not divided).
* Once HSE is > 16MHz, the epod prescaler would also be also required.
*/
static void set_epod_booster(void)
{
/* Reset Epod Prescaler in case it was set earlier with another DIV value */
LL_PWR_DisableEPODBooster();
while (LL_PWR_IsActiveFlag_BOOST() == 1) {
}
LL_RCC_SetPll1EPodPrescaler(LL_RCC_PLL1MBOOST_DIV_1);
if (MHZ(55) <= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
/*
* Set EPOD clock prescaler based on PLL1 input freq
* (MSI/PLLM or HSE/PLLM when HSE is > 16MHz
* Booster clock frequency should be between 4 and 16MHz
* This is done in following steps:
* Read MSI Frequency or HSE oscillaor freq
* Divide PLL1 input freq (MSI/PLL or HSE/PLLM)
* by the targeted freq (8MHz).
* Make sure value is not higher than 16
* Shift in the register space (/2)
*/
int tmp;
if (IS_ENABLED(STM32_PLL_SRC_MSIS)) {
tmp = __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSIRANGESEL_RUN,
STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos);
} else if (IS_ENABLED(STM32_PLL_SRC_HSE) && (MHZ(16) < STM32_HSE_FREQ)) {
tmp = STM32_HSE_FREQ;
} else {
return;
}
tmp = MIN(tmp / STM32_PLL_M_DIVISOR / 8000000, 16);
tmp = tmp / 2;
/* Configure the epod clock frequency between 4 and 16 MHz */
LL_RCC_SetPll1EPodPrescaler(tmp << RCC_PLL1CFGR_PLL1MBOOST_Pos);
/* Enable EPOD booster and wait for booster ready flag set */
LL_PWR_EnableEPODBooster();
while (LL_PWR_IsActiveFlag_BOOST() == 0) {
}
}
}
#endif /* STM32_PLL_ENABLED */
__unused
static void clock_switch_to_hsi(void)
{
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1);
}
__unused
static int set_up_plls(void)
{
#if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || \
defined(STM32_PLL3_ENABLED)
int r;
uint32_t vco_input_range;
#endif
#if defined(STM32_PLL_ENABLED)
/*
* Switch to HSI and disable the PLL before configuration.
* (Switching to HSI makes sure we have a SYSCLK source in
* case we're currently running from the PLL we're about to
* turn off and reconfigure.)
*/
if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
clock_switch_to_hsi();
}
LL_RCC_PLL1_Disable();
/* Configure PLL source : Can be HSE, HSI, MSIS */
if (IS_ENABLED(STM32_PLL_SRC_HSE)) {
/* Main PLL configuration and activation */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL_SRC_MSIS)) {
/* Main PLL configuration and activation */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_MSIS);
} else if (IS_ENABLED(STM32_PLL_SRC_HSI)) {
/* Main PLL configuration and activation */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSI);
} else {
return -ENOTSUP;
}
/*
* Configure the EPOD booster
* before increasing the system clock freq
* and after pll clock source is set
*/
set_epod_booster();
r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range, PLL1_ID);
if (r < 0) {
return r;
}
LL_RCC_PLL1_SetDivider(STM32_PLL_M_DIVISOR);
/* Set VCO Input before enabling the PLL, depends on freq used for PLL1 */
LL_RCC_PLL1_SetVCOInputRange(vco_input_range);
LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER);
LL_RCC_PLL1FRACN_Disable();
if (IS_ENABLED(STM32_PLL_FRACN_ENABLED)) {
LL_RCC_PLL1_SetFRACN(STM32_PLL_FRACN_VALUE);
LL_RCC_PLL1FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL_P_ENABLED)) {
LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR);
LL_RCC_PLL1_EnableDomain_SAI();
}
if (IS_ENABLED(STM32_PLL_Q_ENABLED)) {
LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR);
LL_RCC_PLL1_EnableDomain_48M();
}
if (IS_ENABLED(STM32_PLL_R_ENABLED)) {
__ASSERT_NO_MSG((STM32_PLL_R_DIVISOR == 1) ||
(STM32_PLL_R_DIVISOR % 2 == 0));
LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR);
LL_RCC_PLL1_EnableDomain_SYS();
}
LL_RCC_PLL1_Enable();
while (LL_RCC_PLL1_IsReady() != 1U) {
}
#else
/* Init PLL source to None */
LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_NONE);
#endif /* STM32_PLL_ENABLED */
#if defined(STM32_PLL2_ENABLED)
/* Configure PLL2 source */
if (IS_ENABLED(STM32_PLL2_SRC_HSE)) {
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL2_SRC_MSIS)) {
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_MSIS);
} else if (IS_ENABLED(STM32_PLL2_SRC_HSI)) {
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSI);
} else {
return -ENOTSUP;
}
r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range, PLL2_ID);
if (r < 0) {
return r;
}
LL_RCC_PLL2_SetDivider(STM32_PLL2_M_DIVISOR);
LL_RCC_PLL2_SetVCOInputRange(vco_input_range);
LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER);
LL_RCC_PLL2FRACN_Disable();
if (IS_ENABLED(STM32_PLL2_FRACN_ENABLED)) {
LL_RCC_PLL2_SetFRACN(STM32_PLL2_FRACN_VALUE);
LL_RCC_PLL2FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL2_P_ENABLED)) {
LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR);
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2PEN);
}
if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) {
LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR);
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2QEN);
}
if (IS_ENABLED(STM32_PLL2_R_ENABLED)) {
LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR);
SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2REN);
}
LL_RCC_PLL2_Enable();
while (LL_RCC_PLL2_IsReady() != 1U) {
}
#else
/* Init PLL2 source to None */
LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_NONE);
#endif /* STM32_PLL2_ENABLED */
#if defined(STM32_PLL3_ENABLED)
/* Configure PLL3 source */
if (IS_ENABLED(STM32_PLL3_SRC_HSE)) {
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSE);
} else if (IS_ENABLED(STM32_PLL3_SRC_MSIS)) {
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_MSIS);
} else if (IS_ENABLED(STM32_PLL3_SRC_HSI)) {
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSI);
} else {
return -ENOTSUP;
}
r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range, PLL3_ID);
if (r < 0) {
return r;
}
LL_RCC_PLL3_SetDivider(STM32_PLL3_M_DIVISOR);
LL_RCC_PLL3_SetVCOInputRange(vco_input_range);
LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER);
LL_RCC_PLL3FRACN_Disable();
if (IS_ENABLED(STM32_PLL3_FRACN_ENABLED)) {
LL_RCC_PLL3_SetFRACN(STM32_PLL3_FRACN_VALUE);
LL_RCC_PLL3FRACN_Enable();
}
if (IS_ENABLED(STM32_PLL3_P_ENABLED)) {
LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR);
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3PEN);
}
if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) {
LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR);
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3QEN);
}
if (IS_ENABLED(STM32_PLL3_R_ENABLED)) {
LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR);
SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3REN);
}
LL_RCC_PLL3_Enable();
while (LL_RCC_PLL3_IsReady() != 1U) {
}
#else
/* Init PLL3 source to None */
LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_NONE);
#endif /* STM32_PLL3_ENABLED */
return 0;
}
static void set_up_fixed_clock_sources(void)
{
if (IS_ENABLED(STM32_HSE_ENABLED)) {
/* Check if need to enable HSE bypass feature or not */
if (IS_ENABLED(STM32_HSE_BYPASS)) {
LL_RCC_HSE_EnableBypass();
} else {
LL_RCC_HSE_DisableBypass();
}
/* Enable HSE */
LL_RCC_HSE_Enable();
while (LL_RCC_HSE_IsReady() != 1) {
/* Wait for HSE ready */
}
}
if (IS_ENABLED(STM32_HSI_ENABLED)) {
/* Enable HSI if not enabled */
if (LL_RCC_HSI_IsReady() != 1) {
/* Enable HSI */
LL_RCC_HSI_Enable();
while (LL_RCC_HSI_IsReady() != 1) {
/* Wait for HSI ready */
}
}
}
if (IS_ENABLED(STM32_LSE_ENABLED)) {
/* Enable the power interface clock */
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR);
if (!LL_PWR_IsEnabledBkUpAccess()) {
/* Enable write access to Backup domain */
LL_PWR_EnableBkUpAccess();
while (!LL_PWR_IsEnabledBkUpAccess()) {
/* Wait for Backup domain access */
}
}
/* Configure driving capability */
LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos);
if (IS_ENABLED(STM32_LSE_BYPASS)) {
/* Configure LSE bypass */
LL_RCC_LSE_EnableBypass();
}
/* Enable LSE Oscillator */
LL_RCC_LSE_Enable();
/* Wait for LSE ready */
while (!LL_RCC_LSE_IsReady()) {
}
/* Enable LSESYS additionnally */
LL_RCC_LSE_EnablePropagation();
/* Wait till LSESYS is ready */
while (!LL_RCC_LSESYS_IsReady()) {
}
LL_PWR_DisableBkUpAccess();
}
if (IS_ENABLED(STM32_MSIS_ENABLED)) {
/* Set MSIS Range */
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSIS_SetRange(STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos);
if (IS_ENABLED(STM32_MSIS_PLL_MODE)) {
__ASSERT(STM32_LSE_ENABLED,
"MSIS Hardware auto calibration needs LSE clock activation");
/* Enable MSI hardware auto calibration */
LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIS);
LL_RCC_MSI_EnablePLLMode();
}
/* Enable MSIS */
LL_RCC_MSIS_Enable();
/* Wait till MSIS is ready */
while (LL_RCC_MSIS_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_MSIK_ENABLED)) {
/* Set MSIK Range */
LL_RCC_MSI_EnableRangeSelection();
LL_RCC_MSIK_SetRange(STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos);
if (IS_ENABLED(STM32_MSIK_PLL_MODE)) {
__ASSERT(STM32_LSE_ENABLED,
"MSIK Hardware auto calibration needs LSE clock activation");
/* Enable MSI hardware auto calibration */
LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIK);
LL_RCC_MSI_EnablePLLMode();
}
if (IS_ENABLED(STM32_MSIS_ENABLED)) {
__ASSERT((STM32_MSIK_PLL_MODE == STM32_MSIS_PLL_MODE),
"Please check MSIS/MSIK config consistency");
}
/* Enable MSIK */
LL_RCC_MSIK_Enable();
/* Wait till MSIK is ready */
while (LL_RCC_MSIK_IsReady() != 1) {
}
}
if (IS_ENABLED(STM32_LSI_ENABLED)) {
if (!LL_AHB3_GRP1_IsEnabledClock(LL_AHB3_GRP1_PERIPH_PWR)) {
/* Enable the power interface clock */
LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR);
}
if (!LL_PWR_IsEnabledBkUpAccess()) {
/* Enable write access to Backup domain */
LL_PWR_EnableBkUpAccess();
while (!LL_PWR_IsEnabledBkUpAccess()) {
/* Wait for Backup domain access */
}
}
/* Enable LSI oscillator */
LL_RCC_LSI_Enable();
while (LL_RCC_LSI_IsReady() != 1) {
}
LL_PWR_DisableBkUpAccess();
}
if (IS_ENABLED(STM32_HSI48_ENABLED)) {
LL_RCC_HSI48_Enable();
while (LL_RCC_HSI48_IsReady() != 1) {
}
}
}
int stm32_clock_control_init(const struct device *dev)
{
uint32_t old_hclk_freq = 0;
int r = 0;
ARG_UNUSED(dev);
/* Current hclk value */
old_hclk_freq = __LL_RCC_CALC_HCLK_FREQ(get_startup_frequency(), LL_RCC_GetAHBPrescaler());
/* Set voltage regulator to comply with targeted system frequency */
set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
/* Set flash latency */
/* If freq increases, set flash latency before any clock setting */
if (old_hclk_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
}
/* Set up individual enabled clocks */
set_up_fixed_clock_sources();
/* Set up PLLs */
r = set_up_plls();
if (r < 0) {
return r;
}
/* Set peripheral busses prescalers */
LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_AHB_PRESCALER));
LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER));
LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER));
LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_APB3_PRESCALER));
if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) {
/* Set PLL1 as System Clock Source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) {
/* Set HSE as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_MSIS)) {
/* Set MSIS as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSIS) {
}
} else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) {
/* Set HSI as SYSCLCK source */
LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI);
while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {
}
} else {
return -ENOTSUP;
}
/* Set FLASH latency */
/* If freq not increased, set flash latency after all clock setting */
if (old_hclk_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) {
LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC);
}
/* Update CMSIS variable */
SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC;
return 0;
}
/**
* @brief RCC device, note that priority is intentionally set to 1 so
* that the device init runs just after SOC init
*/
DEVICE_DT_DEFINE(DT_NODELABEL(rcc),
&stm32_clock_control_init,
NULL,
NULL, NULL,
PRE_KERNEL_1,
CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&stm32_clock_control_api);