zephyr/drivers/clock_control/clock_control_mcux_ccm.c
Jiafei Pan 46ce8741bd clock: mcux_ccm: add gpt ipg clock
GPT IPG clock is using GPTx_CLK_ROOT.

Signed-off-by: Jiafei Pan <Jiafei.Pan@nxp.com>
2024-04-09 11:06:24 +02:00

477 lines
12 KiB
C

/*
* Copyright 2017,2024 NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_ccm
#include <errno.h>
#include <zephyr/arch/cpu.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/dt-bindings/clock/imx_ccm.h>
#include <fsl_clock.h>
#if defined(CONFIG_SOC_MIMX8QM6_ADSP) || defined(CONFIG_SOC_MIMX8QX6_ADSP)
#include <main/ipc.h>
#endif
#define LOG_LEVEL CONFIG_CLOCK_CONTROL_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(clock_control);
#ifdef CONFIG_SPI_MCUX_LPSPI
static const clock_name_t lpspi_clocks[] = {
kCLOCK_Usb1PllPfd1Clk,
kCLOCK_Usb1PllPfd0Clk,
kCLOCK_SysPllClk,
kCLOCK_SysPllPfd2Clk,
};
#endif
#ifdef CONFIG_UART_MCUX_IUART
static const clock_root_control_t uart_clk_root[] = {
kCLOCK_RootUart1,
kCLOCK_RootUart2,
kCLOCK_RootUart3,
kCLOCK_RootUart4,
};
static const clock_ip_name_t uart_clocks[] = {
kCLOCK_Uart1,
kCLOCK_Uart2,
kCLOCK_Uart3,
kCLOCK_Uart4,
};
#endif
#ifdef CONFIG_UART_MCUX_LPUART
#ifdef CONFIG_SOC_MIMX8QM6_ADSP
static const clock_ip_name_t lpuart_clocks[] = {
kCLOCK_DMA_Lpuart0,
kCLOCK_DMA_Lpuart1,
kCLOCK_DMA_Lpuart2,
kCLOCK_DMA_Lpuart3,
kCLOCK_DMA_Lpuart4,
};
static const uint32_t lpuart_rate = MHZ(80);
#endif /* CONFIG_SOC_MIMX8QM6_ADSP */
#ifdef CONFIG_SOC_MIMX8QX6_ADSP
static const clock_ip_name_t lpuart_clocks[] = {
kCLOCK_DMA_Lpuart0,
kCLOCK_DMA_Lpuart1,
kCLOCK_DMA_Lpuart2,
kCLOCK_DMA_Lpuart3,
};
static const uint32_t lpuart_rate = MHZ(80);
#endif /* CONFIG_SOC_MIMX8QX6_ADSP */
#endif /* CONFIG_UART_MCUX_LPUART */
static int mcux_ccm_on(const struct device *dev,
clock_control_subsys_t sub_system)
{
uint32_t clock_name = (uintptr_t)sub_system;
uint32_t instance = clock_name & IMX_CCM_INSTANCE_MASK;
switch (clock_name) {
#ifdef CONFIG_UART_MCUX_IUART
case IMX_CCM_UART1_CLK:
case IMX_CCM_UART2_CLK:
case IMX_CCM_UART3_CLK:
case IMX_CCM_UART4_CLK:
CLOCK_EnableClock(uart_clocks[instance]);
return 0;
#endif
#if defined(CONFIG_UART_MCUX_LPUART) && defined(CONFIG_SOC_MIMX8QM6_ADSP)
case IMX_CCM_LPUART1_CLK:
case IMX_CCM_LPUART2_CLK:
case IMX_CCM_LPUART3_CLK:
case IMX_CCM_LPUART4_CLK:
case IMX_CCM_LPUART5_CLK:
CLOCK_EnableClock(lpuart_clocks[instance]);
return 0;
#endif
#if defined(CONFIG_UART_MCUX_LPUART) && defined(CONFIG_SOC_MIMX8QX6_ADSP)
case IMX_CCM_LPUART1_CLK:
case IMX_CCM_LPUART2_CLK:
case IMX_CCM_LPUART3_CLK:
case IMX_CCM_LPUART4_CLK:
CLOCK_EnableClock(lpuart_clocks[instance]);
return 0;
#endif
#if defined(CONFIG_ETH_NXP_ENET)
case IMX_CCM_ENET_CLK:
CLOCK_EnableClock(kCLOCK_Enet);
return 0;
#endif
default:
(void)instance;
return 0;
}
}
static int mcux_ccm_off(const struct device *dev,
clock_control_subsys_t sub_system)
{
uint32_t clock_name = (uintptr_t)sub_system;
uint32_t instance = clock_name & IMX_CCM_INSTANCE_MASK;
switch (clock_name) {
#ifdef CONFIG_UART_MCUX_IUART
case IMX_CCM_UART1_CLK:
case IMX_CCM_UART2_CLK:
case IMX_CCM_UART3_CLK:
case IMX_CCM_UART4_CLK:
CLOCK_DisableClock(uart_clocks[instance]);
return 0;
#endif
default:
(void)instance;
return 0;
}
}
static int mcux_ccm_get_subsys_rate(const struct device *dev,
clock_control_subsys_t sub_system,
uint32_t *rate)
{
uint32_t clock_name = (uintptr_t)sub_system;
switch (clock_name) {
#ifdef CONFIG_I2C_MCUX_LPI2C
case IMX_CCM_LPI2C_CLK:
if (CLOCK_GetMux(kCLOCK_Lpi2cMux) == 0) {
*rate = CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 8
/ (CLOCK_GetDiv(kCLOCK_Lpi2cDiv) + 1);
} else {
*rate = CLOCK_GetOscFreq()
/ (CLOCK_GetDiv(kCLOCK_Lpi2cDiv) + 1);
}
break;
#endif
#ifdef CONFIG_SPI_MCUX_LPSPI
case IMX_CCM_LPSPI_CLK:
{
uint32_t lpspi_mux = CLOCK_GetMux(kCLOCK_LpspiMux);
clock_name_t lpspi_clock = lpspi_clocks[lpspi_mux];
*rate = CLOCK_GetFreq(lpspi_clock)
/ (CLOCK_GetDiv(kCLOCK_LpspiDiv) + 1);
break;
}
#endif
#ifdef CONFIG_UART_MCUX_LPUART
#if defined(CONFIG_SOC_MIMX8QM6_ADSP)
case IMX_CCM_LPUART1_CLK:
case IMX_CCM_LPUART2_CLK:
case IMX_CCM_LPUART3_CLK:
case IMX_CCM_LPUART4_CLK:
case IMX_CCM_LPUART5_CLK:
uint32_t instance = clock_name & IMX_CCM_INSTANCE_MASK;
CLOCK_SetIpFreq(lpuart_clocks[instance], lpuart_rate);
*rate = CLOCK_GetIpFreq(lpuart_clocks[instance]);
break;
#elif defined(CONFIG_SOC_MIMX8QX6_ADSP)
case IMX_CCM_LPUART1_CLK:
case IMX_CCM_LPUART2_CLK:
case IMX_CCM_LPUART3_CLK:
case IMX_CCM_LPUART4_CLK:
uint32_t instance = clock_name & IMX_CCM_INSTANCE_MASK;
CLOCK_SetIpFreq(lpuart_clocks[instance], lpuart_rate);
*rate = CLOCK_GetIpFreq(lpuart_clocks[instance]);
break;
#else
case IMX_CCM_LPUART_CLK:
if (CLOCK_GetMux(kCLOCK_UartMux) == 0) {
*rate = CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6
/ (CLOCK_GetDiv(kCLOCK_UartDiv) + 1);
} else {
*rate = CLOCK_GetOscFreq()
/ (CLOCK_GetDiv(kCLOCK_UartDiv) + 1);
}
break;
#endif
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(usdhc1), okay) && CONFIG_IMX_USDHC
case IMX_CCM_USDHC1_CLK:
*rate = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0) /
(CLOCK_GetDiv(kCLOCK_Usdhc1Div) + 1U);
break;
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(usdhc2), okay) && CONFIG_IMX_USDHC
case IMX_CCM_USDHC2_CLK:
*rate = CLOCK_GetSysPfdFreq(kCLOCK_Pfd0) /
(CLOCK_GetDiv(kCLOCK_Usdhc2Div) + 1U);
break;
#endif
#ifdef CONFIG_DMA_MCUX_EDMA
case IMX_CCM_EDMA_CLK:
*rate = CLOCK_GetIpgFreq();
break;
#endif
#ifdef CONFIG_PWM_MCUX
case IMX_CCM_PWM_CLK:
*rate = CLOCK_GetIpgFreq();
break;
#endif
#ifdef CONFIG_ETH_NXP_ENET
case IMX_CCM_ENET_CLK:
*rate = CLOCK_GetIpgFreq();
break;
#endif
#ifdef CONFIG_PTP_CLOCK_NXP_ENET
case IMX_CCM_ENET_PLL:
*rate = CLOCK_GetPllFreq(kCLOCK_PllEnet);
break;
#endif
#ifdef CONFIG_UART_MCUX_IUART
case IMX_CCM_UART1_CLK:
case IMX_CCM_UART2_CLK:
case IMX_CCM_UART3_CLK:
case IMX_CCM_UART4_CLK:
{
uint32_t instance = clock_name & IMX_CCM_INSTANCE_MASK;
clock_root_control_t clk_root = uart_clk_root[instance];
uint32_t uart_mux = CLOCK_GetRootMux(clk_root);
if (uart_mux == 0) {
*rate = MHZ(24);
} else if (uart_mux == 1) {
*rate = CLOCK_GetPllFreq(kCLOCK_SystemPll1Ctrl) /
(CLOCK_GetRootPreDivider(clk_root)) /
(CLOCK_GetRootPostDivider(clk_root)) /
10;
}
} break;
#endif
#ifdef CONFIG_CAN_MCUX_FLEXCAN
case IMX_CCM_CAN_CLK:
{
uint32_t can_mux = CLOCK_GetMux(kCLOCK_CanMux);
if (can_mux == 0) {
*rate = CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 8
/ (CLOCK_GetDiv(kCLOCK_CanDiv) + 1);
} else if (can_mux == 1) {
*rate = CLOCK_GetOscFreq()
/ (CLOCK_GetDiv(kCLOCK_CanDiv) + 1);
} else {
*rate = CLOCK_GetPllFreq(kCLOCK_PllUsb1) / 6
/ (CLOCK_GetDiv(kCLOCK_CanDiv) + 1);
}
} break;
#endif
#ifdef CONFIG_COUNTER_MCUX_GPT
case IMX_CCM_GPT_CLK:
*rate = CLOCK_GetFreq(kCLOCK_PerClk);
break;
#ifdef CONFIG_SOC_SERIES_IMX8M
case IMX_CCM_GPT_IPG_CLK:
{
uint32_t mux = CLOCK_GetRootMux(kCLOCK_RootGpt1);
if (mux == 0)
*rate = OSC24M_CLK_FREQ;
else
*rate = 0;
} break;
#endif
#endif
#ifdef CONFIG_COUNTER_MCUX_QTMR
case IMX_CCM_QTMR_CLK:
*rate = CLOCK_GetIpgFreq();
break;
#endif
#ifdef CONFIG_I2S_MCUX_SAI
case IMX_CCM_SAI1_CLK:
*rate = CLOCK_GetFreq(kCLOCK_AudioPllClk)
/ (CLOCK_GetDiv(kCLOCK_Sai1PreDiv) + 1)
/ (CLOCK_GetDiv(kCLOCK_Sai1Div) + 1);
break;
case IMX_CCM_SAI2_CLK:
*rate = CLOCK_GetFreq(kCLOCK_AudioPllClk)
/ (CLOCK_GetDiv(kCLOCK_Sai2PreDiv) + 1)
/ (CLOCK_GetDiv(kCLOCK_Sai2Div) + 1);
break;
case IMX_CCM_SAI3_CLK:
*rate = CLOCK_GetFreq(kCLOCK_AudioPllClk)
/ (CLOCK_GetDiv(kCLOCK_Sai3PreDiv) + 1)
/ (CLOCK_GetDiv(kCLOCK_Sai3Div) + 1);
break;
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(flexspi), okay)
case IMX_CCM_FLEXSPI_CLK:
*rate = CLOCK_GetClockRootFreq(kCLOCK_FlexspiClkRoot);
break;
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(flexspi2), okay)
case IMX_CCM_FLEXSPI2_CLK:
*rate = CLOCK_GetClockRootFreq(kCLOCK_Flexspi2ClkRoot);
break;
#endif
#ifdef CONFIG_COUNTER_NXP_PIT
case IMX_CCM_PIT_CLK:
*rate = CLOCK_GetFreq(kCLOCK_PerClk);
break;
#endif
#if DT_NODE_HAS_STATUS(DT_NODELABEL(flexio1), okay) && CONFIG_MCUX_FLEXIO
case IMX_CCM_FLEXIO1_CLK:
{
uint32_t flexio_mux = CLOCK_GetMux(kCLOCK_Flexio1Mux);
uint32_t source_clk_freq = 0;
if (flexio_mux == 0) {
source_clk_freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
} else if (flexio_mux == 1) {
source_clk_freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
#ifdef PLL_VIDEO_OFFSET /* fsl_clock.h */
} else if (flexio_mux == 2) {
source_clk_freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
#endif
} else {
source_clk_freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
}
*rate = source_clk_freq / (CLOCK_GetDiv(kCLOCK_Flexio1PreDiv) + 1)
/ (CLOCK_GetDiv(kCLOCK_Flexio1Div) + 1);
} break;
#endif
#if (DT_NODE_HAS_STATUS(DT_NODELABEL(flexio2), okay) \
|| DT_NODE_HAS_STATUS(DT_NODELABEL(flexio3), okay)) && CONFIG_MCUX_FLEXIO
case IMX_CCM_FLEXIO2_3_CLK:
{
uint32_t flexio_mux = CLOCK_GetMux(kCLOCK_Flexio2Mux);
uint32_t source_clk_freq = 0;
if (flexio_mux == 0) {
source_clk_freq = CLOCK_GetPllFreq(kCLOCK_PllAudio);
} else if (flexio_mux == 1) {
source_clk_freq = CLOCK_GetUsb1PfdFreq(kCLOCK_Pfd2);
#ifdef PLL_VIDEO_OFFSET /* fsl_clock.h */
} else if (flexio_mux == 2) {
source_clk_freq = CLOCK_GetPllFreq(kCLOCK_PllVideo);
#endif
} else {
source_clk_freq = CLOCK_GetPllFreq(kCLOCK_PllUsb1);
}
*rate = source_clk_freq / (CLOCK_GetDiv(kCLOCK_Flexio2PreDiv) + 1)
/ (CLOCK_GetDiv(kCLOCK_Flexio2Div) + 1);
} break;
#endif
#ifdef CONFIG_SPI_MCUX_ECSPI
case IMX_CCM_ECSPI1_CLK:
*rate = CLOCK_GetPllFreq(kCLOCK_SystemPll1Ctrl) /
(CLOCK_GetRootPreDivider(kCLOCK_RootEcspi1)) /
(CLOCK_GetRootPostDivider(kCLOCK_RootEcspi1));
break;
case IMX_CCM_ECSPI2_CLK:
*rate = CLOCK_GetPllFreq(kCLOCK_SystemPll1Ctrl) /
(CLOCK_GetRootPreDivider(kCLOCK_RootEcspi2)) /
(CLOCK_GetRootPostDivider(kCLOCK_RootEcspi2));
break;
case IMX_CCM_ECSPI3_CLK:
*rate = CLOCK_GetPllFreq(kCLOCK_SystemPll1Ctrl) /
(CLOCK_GetRootPreDivider(kCLOCK_RootEcspi3)) /
(CLOCK_GetRootPostDivider(kCLOCK_RootEcspi3));
break;
#endif /* CONFIG_SPI_MCUX_ECSPI */
}
return 0;
}
/*
* Since this function is used to reclock the FlexSPI when running in
* XIP, it must be located in RAM when MEMC Flexspi driver is enabled.
*/
#ifdef CONFIG_MEMC_MCUX_FLEXSPI
#define CCM_SET_FUNC_ATTR __ramfunc
#else
#define CCM_SET_FUNC_ATTR
#endif
static int CCM_SET_FUNC_ATTR mcux_ccm_set_subsys_rate(const struct device *dev,
clock_control_subsys_t subsys,
clock_control_subsys_rate_t rate)
{
uint32_t clock_name = (uintptr_t)subsys;
uint32_t clock_rate = (uintptr_t)rate;
switch (clock_name) {
case IMX_CCM_FLEXSPI_CLK:
__fallthrough;
case IMX_CCM_FLEXSPI2_CLK:
#if defined(CONFIG_SOC_SERIES_IMXRT10XX) && defined(CONFIG_MEMC_MCUX_FLEXSPI)
/* The SOC is using the FlexSPI for XIP. Therefore,
* the FlexSPI itself must be managed within the function,
* which is SOC specific.
*/
return flexspi_clock_set_freq(clock_name, clock_rate);
#endif
default:
/* Silence unused variable warning */
ARG_UNUSED(clock_rate);
return -ENOTSUP;
}
}
static const struct clock_control_driver_api mcux_ccm_driver_api = {
.on = mcux_ccm_on,
.off = mcux_ccm_off,
.get_rate = mcux_ccm_get_subsys_rate,
.set_rate = mcux_ccm_set_subsys_rate,
};
static int mcux_ccm_init(const struct device *dev)
{
#if defined(CONFIG_SOC_MIMX8QM6_ADSP) || defined(CONFIG_SOC_MIMX8QX6_ADSP)
sc_ipc_t ipc_handle;
int ret;
ret = sc_ipc_open(&ipc_handle, DT_REG_ADDR(DT_NODELABEL(scu_mu)));
if (ret != SC_ERR_NONE) {
return -ENODEV;
}
CLOCK_Init(ipc_handle);
#endif
return 0;
}
DEVICE_DT_INST_DEFINE(0, mcux_ccm_init, NULL, NULL, NULL,
PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY,
&mcux_ccm_driver_api);