zephyr/drivers/adc/adc_xmc4xxx.c
Andriy Gelman 2d3493bff0 drivers: adc: Add ADC xmc4xxx drivers
The ADC module has four conversion groups, each one is set up as a zephyr
device. The start-up calibration is initiated globally for all groups
and it is run in each device init function. The ADC module supports post
calibration per group. Post calibration is run automatically after each
group acquires the samples.

Signed-off-by: Andriy Gelman <andriy.gelman@gmail.com>
2022-12-20 14:17:23 +01:00

343 lines
9.2 KiB
C

/*
* Copyright (c) 2022 Andriy Gelman, andriy.gelman@gmail.com
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT infineon_xmc4xxx_adc
#include <errno.h>
#include <soc.h>
#include <stdint.h>
#include <xmc_scu.h>
#include <xmc_vadc.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/device.h>
#include <zephyr/irq.h>
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(adc_xmc4xxx);
#define XMC4XXX_CHANNEL_COUNT 8
struct adc_xmc4xxx_data {
struct adc_context ctx;
const struct device *dev;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint8_t channel_mask;
};
struct adc_xmc4xxx_cfg {
XMC_VADC_GROUP_t *base;
void (*irq_cfg_func)(void);
uint8_t irq_num;
};
static bool adc_global_init;
static XMC_VADC_GLOBAL_t *const adc_global_ptr = (XMC_VADC_GLOBAL_t *)0x40004000;
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct adc_xmc4xxx_data *data = CONTAINER_OF(ctx, struct adc_xmc4xxx_data, ctx);
const struct device *dev = data->dev;
const struct adc_xmc4xxx_cfg *config = dev->config;
VADC_G_TypeDef *adc_group = config->base;
data->repeat_buffer = data->buffer;
XMC_VADC_GROUP_ScanTriggerConversion(adc_group);
XMC_VADC_GROUP_ScanEnableArbitrationSlot(adc_group);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct adc_xmc4xxx_data *data = CONTAINER_OF(ctx, struct adc_xmc4xxx_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void adc_xmc4xxx_isr(const struct device *dev)
{
struct adc_xmc4xxx_data *data = dev->data;
const struct adc_xmc4xxx_cfg *config = dev->config;
XMC_VADC_GROUP_t *adc_group = config->base;
uint32_t channel_mask = data->channel_mask;
uint32_t ch;
/* Conversion has completed. */
while (channel_mask > 0) {
ch = find_lsb_set(channel_mask) - 1;
*data->buffer++ = XMC_VADC_GROUP_GetResult(adc_group, ch);
channel_mask &= ~BIT(ch);
}
adc_context_on_sampling_done(&data->ctx, dev);
LOG_DBG("%s ISR triggered.", dev->name);
}
static int adc_xmc4xxx_validate_buffer_size(const struct adc_sequence *sequence)
{
int active_channels = 0;
int total_buffer_size;
for (int i = 0; i < XMC4XXX_CHANNEL_COUNT; i++) {
if (sequence->channels & BIT(i)) {
active_channels++;
}
}
total_buffer_size = active_channels * sizeof(uint16_t);
if (sequence->options) {
total_buffer_size *= (1 + sequence->options->extra_samplings);
}
if (sequence->buffer_size < total_buffer_size) {
return -ENOMEM;
}
return 0;
}
static int start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int ret;
struct adc_xmc4xxx_data *data = dev->data;
const struct adc_xmc4xxx_cfg *config = dev->config;
XMC_VADC_GROUP_t *adc_group = config->base;
uint32_t requested_channels = sequence->channels;
uint8_t resolution = sequence->resolution;
uint32_t configured_channels = adc_group->ASSEL & requested_channels;
XMC_VADC_GROUP_CLASS_t group_class = {0};
if (requested_channels == 0) {
LOG_ERR("No channels requested");
return -EINVAL;
}
if (requested_channels != configured_channels) {
LOG_ERR("Selected channels not configured");
return -EINVAL;
}
if (sequence->oversampling) {
LOG_ERR("Oversampling not supported");
return -ENOTSUP;
}
ret = adc_xmc4xxx_validate_buffer_size(sequence);
if (ret < 0) {
LOG_ERR("Invalid sequence buffer size");
return ret;
}
if (resolution == 8) {
group_class.conversion_mode_standard = XMC_VADC_CONVMODE_8BIT;
} else if (resolution == 10) {
group_class.conversion_mode_standard = XMC_VADC_CONVMODE_10BIT;
} else if (resolution == 12) {
group_class.conversion_mode_standard = XMC_VADC_CONVMODE_12BIT;
} else {
LOG_ERR("Invalid resolution");
return -EINVAL;
}
XMC_VADC_GROUP_InputClassInit(adc_group, group_class, XMC_VADC_GROUP_CONV_STD, 0);
data->channel_mask = requested_channels;
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
return adc_context_wait_for_completion(&data->ctx);
}
static int adc_xmc4xxx_read(const struct device *dev,
const struct adc_sequence *sequence)
{
int ret;
struct adc_xmc4xxx_data *data = dev->data;
adc_context_lock(&data->ctx, false, NULL);
ret = start_read(dev, sequence);
adc_context_release(&data->ctx, ret);
return ret;
}
#ifdef CONFIG_ADC_ASYNC
static int adc_xmc4xxx_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
int ret;
struct adc_xmc4xxx_data *data = dev->data;
adc_context_lock(&data->ctx, true, async);
ret = start_read(dev, sequence);
adc_context_release(&data->ctx, ret);
return ret;
}
#endif
static int adc_xmc4xxx_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct adc_xmc4xxx_cfg *config = dev->config;
VADC_G_TypeDef *adc_group = config->base;
uint32_t ch_num = channel_cfg->channel_id;
XMC_VADC_CHANNEL_CONFIG_t channel_config = {0};
if (ch_num >= XMC4XXX_CHANNEL_COUNT) {
LOG_ERR("Channel %d is not valid", ch_num);
return -EINVAL;
}
if (channel_cfg->differential) {
LOG_ERR("Differential channels are not supported");
return -EINVAL;
}
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
if (channel_cfg->reference != ADC_REF_INTERNAL) {
LOG_ERR("Invalid channel reference");
return -EINVAL;
}
if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) {
LOG_ERR("Invalid acquisition time");
return -EINVAL;
}
/* check that the group global calibration has successfully finished */
if (adc_group->ARBCFG & VADC_G_ARBCFG_CAL_Msk) {
LOG_WRN("Group calibration hasn't completed yet");
return -EBUSY;
}
channel_config.channel_priority = true;
channel_config.result_reg_number = ch_num;
channel_config.result_alignment = XMC_VADC_RESULT_ALIGN_RIGHT;
channel_config.alias_channel = -1; /* do not alias channel */
XMC_VADC_GROUP_ChannelInit(adc_group, ch_num, &channel_config);
adc_group->RCR[ch_num] = 0;
XMC_VADC_GROUP_ScanAddChannelToSequence(adc_group, ch_num);
return 0;
}
#define VADC_IRQ_MIN 18
#define IRQS_PER_VADC_GROUP 4
static int adc_xmc4xxx_init(const struct device *dev)
{
struct adc_xmc4xxx_data *data = dev->data;
const struct adc_xmc4xxx_cfg *config = dev->config;
VADC_G_TypeDef *adc_group = config->base;
uint8_t service_request;
data->dev = dev;
config->irq_cfg_func();
if (adc_global_init == 0) {
/* defined using xmc_device.h */
#ifdef CLOCK_GATING_SUPPORTED
XMC_SCU_CLOCK_UngatePeripheralClock(XMC_SCU_PERIPHERAL_CLOCK_VADC);
#endif
/* Reset the Hardware */
XMC_SCU_RESET_DeassertPeripheralReset(XMC_SCU_PERIPHERAL_RESET_VADC);
/* enable the module clock */
adc_global_ptr->CLC = 0;
/* global configuration register - defines clock divider to adc clock */
/* automatic post calibration after each conversion is enabled */
adc_global_ptr->GLOBCFG = 0;
/* global result control register is unused */
adc_global_ptr->GLOBRCR = 0;
/* global bound register is unused */
adc_global_ptr->GLOBBOUND = 0;
adc_global_init = 1;
}
adc_group->ARBCFG = 0;
adc_group->BOUND = 0;
XMC_VADC_GROUP_SetPowerMode(adc_group, XMC_VADC_GROUP_POWERMODE_NORMAL);
/* Initiate calibration. It is initialized for all groups. Check that the */
/* calibration completed in the channel setup. */
adc_global_ptr->GLOBCFG |= VADC_GLOBCFG_SUCAL_Msk;
XMC_VADC_GROUP_BackgroundDisableArbitrationSlot(adc_group);
XMC_VADC_GROUP_ScanDisableArbitrationSlot(adc_group);
service_request = (config->irq_num - VADC_IRQ_MIN) % IRQS_PER_VADC_GROUP;
XMC_VADC_GROUP_ScanSetGatingMode(adc_group, XMC_VADC_GATEMODE_IGNORE);
XMC_VADC_GROUP_ScanSetReqSrcEventInterruptNode(adc_group, service_request);
XMC_VADC_GROUP_ScanEnableEvent(adc_group);
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api api_xmc4xxx_driver_api = {
.channel_setup = adc_xmc4xxx_channel_setup,
.read = adc_xmc4xxx_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = adc_xmc4xxx_read_async,
#endif
.ref_internal = DT_INST_PROP(0, vref_internal_mv),
};
#define ADC_XMC4XXX_CONFIG(index) \
static void adc_xmc4xxx_cfg_func_##index(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(index), \
DT_INST_IRQ(index, priority), \
adc_xmc4xxx_isr, DEVICE_DT_INST_GET(index), 0); \
irq_enable(DT_INST_IRQN(index)); \
} \
\
static const struct adc_xmc4xxx_cfg adc_xmc4xxx_cfg_##index = { \
.base = (VADC_G_TypeDef *)DT_INST_REG_ADDR(index), \
.irq_cfg_func = adc_xmc4xxx_cfg_func_##index, \
.irq_num = DT_INST_IRQN(index), \
};
#define ADC_XMC4XXX_INIT(index) \
ADC_XMC4XXX_CONFIG(index) \
\
static struct adc_xmc4xxx_data adc_xmc4xxx_data_##index = { \
ADC_CONTEXT_INIT_TIMER(adc_xmc4xxx_data_##index, ctx), \
ADC_CONTEXT_INIT_LOCK(adc_xmc4xxx_data_##index, ctx), \
ADC_CONTEXT_INIT_SYNC(adc_xmc4xxx_data_##index, ctx), \
}; \
\
DEVICE_DT_INST_DEFINE(index, \
&adc_xmc4xxx_init, NULL, \
&adc_xmc4xxx_data_##index, &adc_xmc4xxx_cfg_##index, \
POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \
&api_xmc4xxx_driver_api);
DT_INST_FOREACH_STATUS_OKAY(ADC_XMC4XXX_INIT)