zephyr/drivers/adc/adc_mcux_lpadc.c
Zhaoxiang Jin db87c6c0ff drivers: adc: Support regulator output as reference to LPADC
Support regulator output different voltage as reference to LPADC
the regulator output voltage can be set through property
zephyr,vref-mv

Signed-off-by: Zhaoxiang Jin <Zhaoxiang.Jin_1@nxp.com>
2024-05-15 17:28:38 +02:00

602 lines
18 KiB
C

/*
* Copyright 2023-2024 NXP
* Copyright (c) 2020 Toby Firth
*
* Based on adc_mcux_adc16.c and adc_mcux_adc12.c, which are:
* Copyright (c) 2017-2018, NXP
* Copyright (c) 2019 Vestas Wind Systems A/S
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_lpc_lpadc
#include <errno.h>
#include <zephyr/drivers/adc.h>
#include <zephyr/sys/util.h>
#include <zephyr/drivers/regulator.h>
#include <zephyr/drivers/clock_control.h>
#include <zephyr/drivers/pinctrl.h>
#define LOG_LEVEL CONFIG_ADC_LOG_LEVEL
#include <zephyr/logging/log.h>
#include <zephyr/irq.h>
#include <fsl_lpadc.h>
LOG_MODULE_REGISTER(nxp_mcux_lpadc);
/*
* Currently, no instance of the ADC IP has more than
* 8 channels present. Therefore, we treat channels
* with an index 8 or higher as a side b channel, with
* the channel index given by channel_num % 8
*/
#define CHANNELS_PER_SIDE 0x8
#define ADC_CONTEXT_USES_KERNEL_TIMER
#include "adc_context.h"
struct mcux_lpadc_config {
ADC_Type *base;
lpadc_reference_voltage_source_t voltage_ref;
uint8_t power_level;
uint32_t calibration_average;
uint32_t offset_a;
uint32_t offset_b;
void (*irq_config_func)(const struct device *dev);
const struct pinctrl_dev_config *pincfg;
const struct device **ref_supplies;
const struct device *clock_dev;
clock_control_subsys_t clock_subsys;
};
struct mcux_lpadc_data {
const struct device *dev;
struct adc_context ctx;
uint16_t *buffer;
uint16_t *repeat_buffer;
uint32_t channels;
lpadc_conv_command_config_t cmd_config[CONFIG_LPADC_CHANNEL_COUNT];
};
static int mcux_lpadc_acquisition_time_setup(const struct device *dev, uint16_t acq_time,
lpadc_conv_command_config_t *cmd)
{
const struct mcux_lpadc_config *config = dev->config;
uint32_t adc_freq_hz = 0;
uint32_t conversion_factor = 0;
uint32_t acquisition_time_value = ADC_ACQ_TIME_VALUE(acq_time);
uint8_t acquisition_time_unit = ADC_ACQ_TIME_UNIT(acq_time);
if (ADC_ACQ_TIME_DEFAULT == acquisition_time_value) {
return 0;
}
/* If the acquisition time is expressed in ADC ticks, then directly compare
* the acquisition time with configuration items (3, 5, 7, etc. ADC ticks)
* supported by the LPADC. The conversion factor is set to 1 (means do not need
* to convert configuration items from ADC ticks to nanoseconds).
* If the acquisition time is expressed in microseconds or nanoseconds, First
* calculate the ADC cycle based on the ADC clock, then convert the configuration
* items supported by LPADC into nanoseconds, and finally compare the acquisition
* time with configuration items. The conversion factor is equal to the ADC cycle
* (means convert configuration items from ADC ticks to nanoseconds).
*/
if (ADC_ACQ_TIME_TICKS == acquisition_time_unit) {
conversion_factor = 1;
} else {
if (clock_control_get_rate(config->clock_dev, config->clock_subsys, &adc_freq_hz)) {
LOG_ERR("Get clock rate failed");
return -EINVAL;
}
conversion_factor = 1000000000 / adc_freq_hz;
if (ADC_ACQ_TIME_MICROSECONDS == acquisition_time_unit) {
acquisition_time_value *= 1000;
}
}
if ((3 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK3;
} else if ((5 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK5;
} else if ((7 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK7;
} else if ((11 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK11;
} else if ((19 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK19;
} else if ((35 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK35;
} else if ((67 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK67;
} else if ((131 * conversion_factor) >= acquisition_time_value) {
cmd->sampleTimeMode = kLPADC_SampleTimeADCK131;
} else {
return -EINVAL;
}
return 0;
}
static int mcux_lpadc_channel_setup(const struct device *dev,
const struct adc_channel_cfg *channel_cfg)
{
const struct mcux_lpadc_config *config = dev->config;
const struct device **regulator = config->ref_supplies;
uint16_t vref_mv = CONTAINER_OF(channel_cfg, struct adc_dt_spec, channel_cfg)->vref_mv;
int32_t vref_uv = (int32_t)((uint32_t)vref_mv * 1000);
struct mcux_lpadc_data *data = dev->data;
lpadc_conv_command_config_t *cmd;
uint8_t channel_side;
uint8_t channel_num;
int err;
/* User may configure maximum number of active channels */
if (channel_cfg->channel_id >= CONFIG_LPADC_CHANNEL_COUNT) {
LOG_ERR("Channel %d is not valid", channel_cfg->channel_id);
return -EINVAL;
}
/* Select ADC CMD register to configure based off channel ID */
cmd = &data->cmd_config[channel_cfg->channel_id];
/* If bit 5 of input_positive is set, then channel side B is used */
channel_side = 0x20 & channel_cfg->input_positive;
/* Channel number is selected by lower 4 bits of input_positive */
channel_num = ADC_CMDL_ADCH(channel_cfg->input_positive);
LOG_DBG("Channel num: %u, channel side: %c", channel_num,
channel_side == 0 ? 'A' : 'B');
LPADC_GetDefaultConvCommandConfig(cmd);
/* Configure LPADC acquisition time. */
if (mcux_lpadc_acquisition_time_setup(dev, channel_cfg->acquisition_time, cmd)) {
LOG_ERR("LPADC acquisition time setting failed");
return -EINVAL;
}
if (channel_cfg->differential) {
/* Channel pairs must match in differential mode */
if ((ADC_CMDL_ADCH(channel_cfg->input_positive)) !=
(ADC_CMDL_ADCH(channel_cfg->input_negative))) {
return -ENOTSUP;
}
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF
/* Check to see which channel is the positive input */
if (channel_cfg->input_positive & 0x20) {
/* Channel B is positive side */
cmd->sampleChannelMode =
kLPADC_SampleChannelDiffBothSideBA;
} else {
/* Channel A is positive side */
cmd->sampleChannelMode =
kLPADC_SampleChannelDiffBothSideAB;
}
#else
cmd->sampleChannelMode = kLPADC_SampleChannelDiffBothSide;
#endif
} else if (channel_side != 0) {
cmd->sampleChannelMode = kLPADC_SampleChannelSingleEndSideB;
} else {
/* Default value for sampleChannelMode is SideA */
}
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_CSCALE) && FSL_FEATURE_LPADC_HAS_CMDL_CSCALE
/*
* The true scaling factor used by the LPADC is 30/64, instead of
* 1/2. Select 1/2 as this is the closest scaling factor available
* in Zephyr.
*/
if (channel_cfg->gain == ADC_GAIN_1_2) {
LOG_INF("Channel gain of 30/64 selected");
cmd->sampleScaleMode = kLPADC_SamplePartScale;
} else if (channel_cfg->gain == ADC_GAIN_1) {
cmd->sampleScaleMode = kLPADC_SampleFullScale;
} else {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
#else
if (channel_cfg->gain != ADC_GAIN_1) {
LOG_ERR("Invalid channel gain");
return -EINVAL;
}
#endif
/*
* ADC_REF_EXTERNAL1: Use SoC internal regulator as LPADC reference voltage.
* ADC_REF_EXTERNAL0: Use other voltage source (maybe also within the SoCs)
* as LPADC reference voltage, like VREFH, VDDA, etc.
*/
if (channel_cfg->reference == ADC_REF_EXTERNAL1) {
LOG_DBG("ref external1");
if (*regulator != NULL) {
err = regulator_set_voltage(*regulator, vref_uv, vref_uv);
if (err < 0) {
return err;
}
} else {
return -EINVAL;
}
} else if (channel_cfg->reference == ADC_REF_EXTERNAL0) {
LOG_DBG("ref external0");
} else {
LOG_DBG("ref not support");
return -EINVAL;
}
cmd->channelNumber = channel_num;
return 0;
}
static int mcux_lpadc_start_read(const struct device *dev,
const struct adc_sequence *sequence)
{
const struct mcux_lpadc_config *config = dev->config;
struct mcux_lpadc_data *data = dev->data;
lpadc_hardware_average_mode_t hardware_average_mode;
uint8_t channel, last_enabled;
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) \
&& FSL_FEATURE_LPADC_HAS_CMDL_MODE
lpadc_conversion_resolution_mode_t resolution_mode;
switch (sequence->resolution) {
case 12:
case 13:
resolution_mode = kLPADC_ConversionResolutionStandard;
break;
case 16:
resolution_mode = kLPADC_ConversionResolutionHigh;
break;
default:
LOG_ERR("Unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
#else
/* If FSL_FEATURE_LPADC_HAS_CMDL_MODE is not defined
only 12/13 bit resolution is supported. */
if (sequence->resolution != 12 && sequence->resolution != 13) {
LOG_ERR("Unsupported resolution %d", sequence->resolution);
return -ENOTSUP;
}
#endif /* FSL_FEATURE_LPADC_HAS_CMDL_MODE */
switch (sequence->oversampling) {
case 0:
hardware_average_mode = kLPADC_HardwareAverageCount1;
break;
case 1:
hardware_average_mode = kLPADC_HardwareAverageCount2;
break;
case 2:
hardware_average_mode = kLPADC_HardwareAverageCount4;
break;
case 3:
hardware_average_mode = kLPADC_HardwareAverageCount8;
break;
case 4:
hardware_average_mode = kLPADC_HardwareAverageCount16;
break;
case 5:
hardware_average_mode = kLPADC_HardwareAverageCount32;
break;
case 6:
hardware_average_mode = kLPADC_HardwareAverageCount64;
break;
case 7:
hardware_average_mode = kLPADC_HardwareAverageCount128;
break;
default:
LOG_ERR("Unsupported oversampling value %d",
sequence->oversampling);
return -ENOTSUP;
}
/*
* Now, look at the selected channels to determine which ADC channels
* we need to configure, and set those channels up.
*
* Since this ADC supports chaining channels in hardware, we will
* start with the highest channel ID and work downwards, chaining
* channels as we go.
*/
channel = CONFIG_LPADC_CHANNEL_COUNT;
last_enabled = 0;
while (channel-- > 0) {
if (sequence->channels & BIT(channel)) {
/* Setup this channel command */
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_MODE) && FSL_FEATURE_LPADC_HAS_CMDL_MODE
data->cmd_config[channel].conversionResolutionMode =
resolution_mode;
#endif
data->cmd_config[channel].hardwareAverageMode =
hardware_average_mode;
if (last_enabled) {
/* Chain channel */
data->cmd_config[channel].chainedNextCommandNumber =
last_enabled + 1;
LOG_DBG("Chaining channel %u to %u",
channel, last_enabled);
} else {
/* End of chain */
data->cmd_config[channel].chainedNextCommandNumber = 0;
}
last_enabled = channel;
LPADC_SetConvCommandConfig(config->base,
channel + 1, &data->cmd_config[channel]);
}
};
data->buffer = sequence->buffer;
adc_context_start_read(&data->ctx, sequence);
int error = adc_context_wait_for_completion(&data->ctx);
return error;
}
static int mcux_lpadc_read_async(const struct device *dev,
const struct adc_sequence *sequence,
struct k_poll_signal *async)
{
struct mcux_lpadc_data *data = dev->data;
int error;
adc_context_lock(&data->ctx, async ? true : false, async);
error = mcux_lpadc_start_read(dev, sequence);
adc_context_release(&data->ctx, error);
return error;
}
static int mcux_lpadc_read(const struct device *dev,
const struct adc_sequence *sequence)
{
return mcux_lpadc_read_async(dev, sequence, NULL);
}
static void mcux_lpadc_start_channel(const struct device *dev)
{
const struct mcux_lpadc_config *config = dev->config;
struct mcux_lpadc_data *data = dev->data;
lpadc_conv_trigger_config_t trigger_config;
uint8_t first_channel;
first_channel = find_lsb_set(data->channels) - 1;
LOG_DBG("Starting channel %d, input %d", first_channel,
data->cmd_config[first_channel].channelNumber);
LPADC_GetDefaultConvTriggerConfig(&trigger_config);
trigger_config.targetCommandId = first_channel + 1;
/* configures trigger0. */
LPADC_SetConvTriggerConfig(config->base, 0, &trigger_config);
/* 1 is trigger0 mask. */
LPADC_DoSoftwareTrigger(config->base, 1);
}
static void adc_context_start_sampling(struct adc_context *ctx)
{
struct mcux_lpadc_data *data =
CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx);
data->channels = ctx->sequence.channels;
data->repeat_buffer = data->buffer;
mcux_lpadc_start_channel(data->dev);
}
static void adc_context_update_buffer_pointer(struct adc_context *ctx,
bool repeat_sampling)
{
struct mcux_lpadc_data *data =
CONTAINER_OF(ctx, struct mcux_lpadc_data, ctx);
if (repeat_sampling) {
data->buffer = data->repeat_buffer;
}
}
static void mcux_lpadc_isr(const struct device *dev)
{
const struct mcux_lpadc_config *config = dev->config;
struct mcux_lpadc_data *data = dev->data;
ADC_Type *base = config->base;
lpadc_conv_result_t conv_result;
lpadc_sample_channel_mode_t conv_mode;
int16_t result;
uint16_t channel;
#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \
&& (FSL_FEATURE_LPADC_FIFO_COUNT == 2U))
LPADC_GetConvResult(base, &conv_result, 0U);
#else
LPADC_GetConvResult(base, &conv_result);
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */
channel = conv_result.commandIdSource - 1;
LOG_DBG("Finished channel %d. Raw result is 0x%04x",
channel, conv_result.convValue);
/*
* For 12 or 13 bit resolution the the LSBs will be 0, so a bit shift
* is needed. For differential modes, the ADC conversion to
* millivolts expects to use a shift one less than the resolution.
*
* For 16 bit modes, the adc value can be left untouched. ADC
* API should treat the value as signed if the channel is
* in differential mode
*/
conv_mode = data->cmd_config[channel].sampleChannelMode;
if (data->ctx.sequence.resolution < 15) {
result = ((conv_result.convValue >> 3) & 0xFFF);
#if defined(FSL_FEATURE_LPADC_HAS_CMDL_DIFF) && FSL_FEATURE_LPADC_HAS_CMDL_DIFF
if (conv_mode == kLPADC_SampleChannelDiffBothSideAB ||
conv_mode == kLPADC_SampleChannelDiffBothSideBA) {
#else
if (conv_mode == kLPADC_SampleChannelDiffBothSide) {
#endif
if ((conv_result.convValue & 0x8000)) {
/* 13 bit mode, MSB is sign bit. (2's complement) */
result -= 0x1000;
}
}
*data->buffer++ = result;
} else {
*data->buffer++ = conv_result.convValue;
}
data->channels &= ~BIT(channel);
/*
* Hardware will automatically continue sampling, so no need
* to issue new trigger
*/
if (data->channels == 0) {
adc_context_on_sampling_done(&data->ctx, dev);
}
}
static int mcux_lpadc_init(const struct device *dev)
{
const struct mcux_lpadc_config *config = dev->config;
struct mcux_lpadc_data *data = dev->data;
ADC_Type *base = config->base;
lpadc_config_t adc_config;
int err;
err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT);
if (err) {
return err;
}
/* Enable necessary regulators */
const struct device **regulator = config->ref_supplies;
while (*regulator != NULL) {
err = regulator_enable(*(regulator++));
if (err) {
return err;
}
}
LPADC_GetDefaultConfig(&adc_config);
adc_config.enableAnalogPreliminary = true;
adc_config.referenceVoltageSource = config->voltage_ref;
#if defined(FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS) \
&& FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS
adc_config.conversionAverageMode = config->calibration_average;
#endif /* FSL_FEATURE_LPADC_HAS_CTRL_CAL_AVGS */
adc_config.powerLevelMode = config->power_level;
LPADC_Init(base, &adc_config);
/* Do ADC calibration. */
#if defined(FSL_FEATURE_LPADC_HAS_CTRL_CALOFS) \
&& FSL_FEATURE_LPADC_HAS_CTRL_CALOFS
#if defined(FSL_FEATURE_LPADC_HAS_OFSTRIM) \
&& FSL_FEATURE_LPADC_HAS_OFSTRIM
/* Request offset calibration. */
#if defined(CONFIG_LPADC_DO_OFFSET_CALIBRATION) \
&& CONFIG_LPADC_DO_OFFSET_CALIBRATION
LPADC_DoOffsetCalibration(base);
#else
LPADC_SetOffsetValue(base,
config->offset_a,
config->offset_b);
#endif /* DEMO_LPADC_DO_OFFSET_CALIBRATION */
#endif /* FSL_FEATURE_LPADC_HAS_OFSTRIM */
/* Request gain calibration. */
LPADC_DoAutoCalibration(base);
#endif /* FSL_FEATURE_LPADC_HAS_CTRL_CALOFS */
#if (defined(FSL_FEATURE_LPADC_HAS_CFG_CALOFS) \
&& FSL_FEATURE_LPADC_HAS_CFG_CALOFS)
/* Do auto calibration. */
LPADC_DoAutoCalibration(base);
#endif /* FSL_FEATURE_LPADC_HAS_CFG_CALOFS */
/* Enable the watermark interrupt. */
#if (defined(FSL_FEATURE_LPADC_FIFO_COUNT) \
&& (FSL_FEATURE_LPADC_FIFO_COUNT == 2U))
LPADC_EnableInterrupts(base, kLPADC_FIFO0WatermarkInterruptEnable);
#else
LPADC_EnableInterrupts(base, kLPADC_FIFOWatermarkInterruptEnable);
#endif /* FSL_FEATURE_LPADC_FIFO_COUNT */
config->irq_config_func(dev);
data->dev = dev;
adc_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct adc_driver_api mcux_lpadc_driver_api = {
.channel_setup = mcux_lpadc_channel_setup,
.read = mcux_lpadc_read,
#ifdef CONFIG_ADC_ASYNC
.read_async = mcux_lpadc_read_async,
#endif
};
#define LPADC_REGULATOR_DEPENDENCY(node_id, prop, idx) \
DEVICE_DT_GET(DT_PHANDLE_BY_IDX(node_id, prop, idx)),
#define LPADC_REGULATORS_DEFINE(inst) \
static const struct device *mcux_lpadc_ref_supplies_##inst[] = { \
COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, nxp_reference_supply), \
(DT_INST_FOREACH_PROP_ELEM(inst, nxp_reference_supply, \
LPADC_REGULATOR_DEPENDENCY)), ()) NULL};
#define LPADC_MCUX_INIT(n) \
LPADC_REGULATORS_DEFINE(n) \
\
static void mcux_lpadc_config_func_##n(const struct device *dev); \
\
PINCTRL_DT_INST_DEFINE(n); \
static const struct mcux_lpadc_config mcux_lpadc_config_##n = { \
.base = (ADC_Type *)DT_INST_REG_ADDR(n), \
.voltage_ref = DT_INST_PROP(n, voltage_ref), \
.calibration_average = DT_INST_ENUM_IDX_OR(n, calibration_average, 0), \
.power_level = DT_INST_PROP(n, power_level), \
.offset_a = DT_INST_PROP(n, offset_value_a), \
.offset_b = DT_INST_PROP(n, offset_value_b), \
.irq_config_func = mcux_lpadc_config_func_##n, \
.pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.ref_supplies = mcux_lpadc_ref_supplies_##n, \
.clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \
.clock_subsys = (clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name),\
}; \
static struct mcux_lpadc_data mcux_lpadc_data_##n = { \
ADC_CONTEXT_INIT_TIMER(mcux_lpadc_data_##n, ctx), \
ADC_CONTEXT_INIT_LOCK(mcux_lpadc_data_##n, ctx), \
ADC_CONTEXT_INIT_SYNC(mcux_lpadc_data_##n, ctx), \
}; \
\
DEVICE_DT_INST_DEFINE(n, \
&mcux_lpadc_init, NULL, &mcux_lpadc_data_##n, \
&mcux_lpadc_config_##n, POST_KERNEL, \
CONFIG_ADC_INIT_PRIORITY, \
&mcux_lpadc_driver_api); \
\
static void mcux_lpadc_config_func_##n(const struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), \
DT_INST_IRQ(n, priority), mcux_lpadc_isr, \
DEVICE_DT_INST_GET(n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(LPADC_MCUX_INIT)