zephyr/drivers/spi/spi_mcux_lpspi.c
Martí Bolívar 7e0eed9235 devicetree: allow access to all nodes
Usually, we want to operate only on "available" device
nodes ("available" means "status is okay and a matching binding is
found"), but that's not true in all cases.

Sometimes we want to operate on special nodes without matching
bindings, such as those describing memory.

To handle the distinction, change various additional devicetree APIs
making it clear that they operate only on available device nodes,
adjusting gen_defines and devicetree.h implementation details
accordingly:

- emit macros for all existing nodes in gen_defines.py, regardless
  of status or matching binding
- rename DT_NUM_INST to DT_NUM_INST_STATUS_OKAY
- rename DT_NODE_HAS_COMPAT to DT_NODE_HAS_COMPAT_STATUS_OKAY
- rename DT_INST_FOREACH to DT_INST_FOREACH_STATUS_OKAY
- rename DT_ANY_INST_ON_BUS to DT_ANY_INST_ON_BUS_STATUS_OKAY
- rewrite DT_HAS_NODE_STATUS_OKAY in terms of a new DT_NODE_HAS_STATUS
- resurrect DT_HAS_NODE in the form of DT_NODE_EXISTS
- remove DT_COMPAT_ON_BUS as a public API
- use the new default_prop_types edtlib parameter

Signed-off-by: Martí Bolívar <marti.bolivar@nordicsemi.no>
2020-05-08 19:37:18 -05:00

309 lines
8.1 KiB
C

/*
* Copyright (c) 2018, NXP
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT nxp_imx_lpspi
#include <errno.h>
#include <drivers/spi.h>
#include <drivers/clock_control.h>
#include <fsl_lpspi.h>
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_mcux_lpspi);
#include "spi_context.h"
#define CHIP_SELECT_COUNT 4
#define MAX_DATA_WIDTH 4096
struct spi_mcux_config {
LPSPI_Type *base;
char *clock_name;
clock_control_subsys_t clock_subsys;
void (*irq_config_func)(struct device *dev);
};
struct spi_mcux_data {
lpspi_master_handle_t handle;
struct spi_context ctx;
size_t transfer_len;
};
static void spi_mcux_transfer_next_packet(struct device *dev)
{
const struct spi_mcux_config *config = dev->config_info;
struct spi_mcux_data *data = dev->driver_data;
LPSPI_Type *base = config->base;
struct spi_context *ctx = &data->ctx;
lpspi_transfer_t transfer;
status_t status;
if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) {
/* nothing left to rx or tx, we're done! */
spi_context_cs_control(&data->ctx, false);
spi_context_complete(&data->ctx, 0);
return;
}
transfer.configFlags = kLPSPI_MasterPcsContinuous |
(ctx->config->slave << LPSPI_MASTER_PCS_SHIFT);
if (ctx->tx_len == 0) {
/* rx only, nothing to tx */
transfer.txData = NULL;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
} else if (ctx->rx_len == 0) {
/* tx only, nothing to rx */
transfer.txData = (u8_t *) ctx->tx_buf;
transfer.rxData = NULL;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len == ctx->rx_len) {
/* rx and tx are the same length */
transfer.txData = (u8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
} else if (ctx->tx_len > ctx->rx_len) {
/* Break up the tx into multiple transfers so we don't have to
* rx into a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (u8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->rx_len;
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
} else {
/* Break up the rx into multiple transfers so we don't have to
* tx from a longer intermediate buffer. Leave chip select
* active between transfers.
*/
transfer.txData = (u8_t *) ctx->tx_buf;
transfer.rxData = ctx->rx_buf;
transfer.dataSize = ctx->tx_len;
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
}
if (!(ctx->tx_count <= 1 && ctx->rx_count <= 1)) {
transfer.configFlags |= kLPSPI_MasterPcsContinuous;
}
data->transfer_len = transfer.dataSize;
status = LPSPI_MasterTransferNonBlocking(base, &data->handle,
&transfer);
if (status != kStatus_Success) {
LOG_ERR("Transfer could not start");
}
}
static void spi_mcux_isr(void *arg)
{
struct device *dev = (struct device *)arg;
const struct spi_mcux_config *config = dev->config_info;
struct spi_mcux_data *data = dev->driver_data;
LPSPI_Type *base = config->base;
LPSPI_MasterTransferHandleIRQ(base, &data->handle);
}
static void spi_mcux_master_transfer_callback(LPSPI_Type *base,
lpspi_master_handle_t *handle, status_t status, void *userData)
{
struct device *dev = userData;
struct spi_mcux_data *data = dev->driver_data;
spi_context_update_tx(&data->ctx, 1, data->transfer_len);
spi_context_update_rx(&data->ctx, 1, data->transfer_len);
spi_mcux_transfer_next_packet(dev);
}
static int spi_mcux_configure(struct device *dev,
const struct spi_config *spi_cfg)
{
const struct spi_mcux_config *config = dev->config_info;
struct spi_mcux_data *data = dev->driver_data;
LPSPI_Type *base = config->base;
lpspi_master_config_t master_config;
struct device *clock_dev;
u32_t clock_freq;
u32_t word_size;
if (spi_context_configured(&data->ctx, spi_cfg)) {
/* This configuration is already in use */
return 0;
}
LPSPI_MasterGetDefaultConfig(&master_config);
if (spi_cfg->slave > CHIP_SELECT_COUNT) {
LOG_ERR("Slave %d is greater than %d",
spi_cfg->slave,
CHIP_SELECT_COUNT);
return -EINVAL;
}
word_size = SPI_WORD_SIZE_GET(spi_cfg->operation);
if (word_size > MAX_DATA_WIDTH) {
LOG_ERR("Word size %d is greater than %d",
word_size, MAX_DATA_WIDTH);
return -EINVAL;
}
master_config.bitsPerFrame = word_size;
master_config.cpol =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL)
? kLPSPI_ClockPolarityActiveLow
: kLPSPI_ClockPolarityActiveHigh;
master_config.cpha =
(SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA)
? kLPSPI_ClockPhaseSecondEdge
: kLPSPI_ClockPhaseFirstEdge;
master_config.direction =
(spi_cfg->operation & SPI_TRANSFER_LSB)
? kLPSPI_LsbFirst
: kLPSPI_MsbFirst;
master_config.baudRate = spi_cfg->frequency;
clock_dev = device_get_binding(config->clock_name);
if (clock_dev == NULL) {
return -EINVAL;
}
if (clock_control_get_rate(clock_dev, config->clock_subsys,
&clock_freq)) {
return -EINVAL;
}
LPSPI_MasterInit(base, &master_config, clock_freq);
LPSPI_MasterTransferCreateHandle(base, &data->handle,
spi_mcux_master_transfer_callback, dev);
LPSPI_SetDummyData(base, 0);
data->ctx.config = spi_cfg;
spi_context_cs_configure(&data->ctx);
return 0;
}
static int transceive(struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
bool asynchronous,
struct k_poll_signal *signal)
{
struct spi_mcux_data *data = dev->driver_data;
int ret;
spi_context_lock(&data->ctx, asynchronous, signal);
ret = spi_mcux_configure(dev, spi_cfg);
if (ret) {
goto out;
}
spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1);
spi_context_cs_control(&data->ctx, true);
spi_mcux_transfer_next_packet(dev);
ret = spi_context_wait_for_completion(&data->ctx);
out:
spi_context_release(&data->ctx, ret);
return ret;
}
static int spi_mcux_transceive(struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL);
}
#ifdef CONFIG_SPI_ASYNC
static int spi_mcux_transceive_async(struct device *dev,
const struct spi_config *spi_cfg,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs,
struct k_poll_signal *async)
{
return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async);
}
#endif /* CONFIG_SPI_ASYNC */
static int spi_mcux_release(struct device *dev,
const struct spi_config *spi_cfg)
{
struct spi_mcux_data *data = dev->driver_data;
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static int spi_mcux_init(struct device *dev)
{
const struct spi_mcux_config *config = dev->config_info;
struct spi_mcux_data *data = dev->driver_data;
config->irq_config_func(dev);
spi_context_unlock_unconditionally(&data->ctx);
return 0;
}
static const struct spi_driver_api spi_mcux_driver_api = {
.transceive = spi_mcux_transceive,
#ifdef CONFIG_SPI_ASYNC
.transceive_async = spi_mcux_transceive_async,
#endif
.release = spi_mcux_release,
};
#define SPI_MCUX_LPSPI_INIT(n) \
static void spi_mcux_config_func_##n(struct device *dev); \
\
static const struct spi_mcux_config spi_mcux_config_##n = { \
.base = (LPSPI_Type *) DT_INST_REG_ADDR(n), \
.clock_name = DT_INST_CLOCKS_LABEL(n), \
.clock_subsys = \
(clock_control_subsys_t)DT_INST_CLOCKS_CELL(n, name), \
.irq_config_func = spi_mcux_config_func_##n, \
}; \
\
static struct spi_mcux_data spi_mcux_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##n, ctx), \
}; \
\
DEVICE_AND_API_INIT(spi_mcux_##n, DT_INST_LABEL(n), \
&spi_mcux_init, &spi_mcux_data_##n, \
&spi_mcux_config_##n, POST_KERNEL, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&spi_mcux_driver_api); \
\
static void spi_mcux_config_func_##n(struct device *dev) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \
spi_mcux_isr, DEVICE_GET(spi_mcux_##n), 0); \
\
irq_enable(DT_INST_IRQN(n)); \
}
DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_LPSPI_INIT)