zephyr/kernel/init.c
Andy Ross fd340ebf31 sched: Optimize dummy thread usage on SMP
Nicolas Pitre points out that since these thread structs are just
dummies for the context swtiching, they can be presumed to be "write
only" and thus there's no point in having one per CPU, everyone can
share the same one.

The only gotcha is that we never really documented (nor really have a
place to document) that rule, so it's not theoretically impossible for
an architecture to read back what it might have written underneath
arch_switch().  Leave this in a separate commit for bisection
purposes, but the risk seems very low.

Signed-off-by: Andy Ross <andyross@google.com>
2024-05-02 13:55:03 -04:00

747 lines
19 KiB
C

/*
* Copyright (c) 2010-2014 Wind River Systems, Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
/**
* @file
* @brief Kernel initialization module
*
* This module contains routines that are used to initialize the kernel.
*/
#include <offsets_short.h>
#include <zephyr/kernel.h>
#include <zephyr/sys/printk.h>
#include <zephyr/debug/stack.h>
#include <zephyr/random/random.h>
#include <zephyr/linker/sections.h>
#include <zephyr/toolchain.h>
#include <zephyr/kernel_structs.h>
#include <zephyr/device.h>
#include <zephyr/init.h>
#include <zephyr/linker/linker-defs.h>
#include <ksched.h>
#include <kthread.h>
#include <string.h>
#include <zephyr/sys/dlist.h>
#include <kernel_internal.h>
#include <zephyr/drivers/entropy.h>
#include <zephyr/logging/log_ctrl.h>
#include <zephyr/tracing/tracing.h>
#include <stdbool.h>
#include <zephyr/debug/gcov.h>
#include <kswap.h>
#include <zephyr/timing/timing.h>
#include <zephyr/logging/log.h>
#include <zephyr/pm/device_runtime.h>
#include <zephyr/internal/syscall_handler.h>
LOG_MODULE_REGISTER(os, CONFIG_KERNEL_LOG_LEVEL);
BUILD_ASSERT(CONFIG_MP_NUM_CPUS == CONFIG_MP_MAX_NUM_CPUS,
"CONFIG_MP_NUM_CPUS and CONFIG_MP_MAX_NUM_CPUS need to be set the same");
/* the only struct z_kernel instance */
__pinned_bss
struct z_kernel _kernel;
__pinned_bss
atomic_t _cpus_active;
/* init/main and idle threads */
K_THREAD_PINNED_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE);
struct k_thread z_main_thread;
#ifdef CONFIG_MULTITHREADING
__pinned_bss
struct k_thread z_idle_threads[CONFIG_MP_MAX_NUM_CPUS];
static K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_idle_stacks,
CONFIG_MP_MAX_NUM_CPUS,
CONFIG_IDLE_STACK_SIZE);
static void z_init_static_threads(void)
{
STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
z_setup_new_thread(
thread_data->init_thread,
thread_data->init_stack,
thread_data->init_stack_size,
thread_data->init_entry,
thread_data->init_p1,
thread_data->init_p2,
thread_data->init_p3,
thread_data->init_prio,
thread_data->init_options,
thread_data->init_name);
thread_data->init_thread->init_data = thread_data;
}
#ifdef CONFIG_USERSPACE
STRUCT_SECTION_FOREACH(k_object_assignment, pos) {
for (int i = 0; pos->objects[i] != NULL; i++) {
k_object_access_grant(pos->objects[i],
pos->thread);
}
}
#endif /* CONFIG_USERSPACE */
/*
* Non-legacy static threads may be started immediately or
* after a previously specified delay. Even though the
* scheduler is locked, ticks can still be delivered and
* processed. Take a sched lock to prevent them from running
* until they are all started.
*
* Note that static threads defined using the legacy API have a
* delay of K_FOREVER.
*/
k_sched_lock();
STRUCT_SECTION_FOREACH(_static_thread_data, thread_data) {
k_timeout_t init_delay = Z_THREAD_INIT_DELAY(thread_data);
if (!K_TIMEOUT_EQ(init_delay, K_FOREVER)) {
thread_schedule_new(thread_data->init_thread,
init_delay);
}
}
k_sched_unlock();
}
#else
#define z_init_static_threads() do { } while (false)
#endif /* CONFIG_MULTITHREADING */
extern const struct init_entry __init_start[];
extern const struct init_entry __init_EARLY_start[];
extern const struct init_entry __init_PRE_KERNEL_1_start[];
extern const struct init_entry __init_PRE_KERNEL_2_start[];
extern const struct init_entry __init_POST_KERNEL_start[];
extern const struct init_entry __init_APPLICATION_start[];
extern const struct init_entry __init_end[];
enum init_level {
INIT_LEVEL_EARLY = 0,
INIT_LEVEL_PRE_KERNEL_1,
INIT_LEVEL_PRE_KERNEL_2,
INIT_LEVEL_POST_KERNEL,
INIT_LEVEL_APPLICATION,
#ifdef CONFIG_SMP
INIT_LEVEL_SMP,
#endif /* CONFIG_SMP */
};
#ifdef CONFIG_SMP
extern const struct init_entry __init_SMP_start[];
#endif /* CONFIG_SMP */
/*
* storage space for the interrupt stack
*
* Note: This area is used as the system stack during kernel initialization,
* since the kernel hasn't yet set up its own stack areas. The dual purposing
* of this area is safe since interrupts are disabled until the kernel context
* switches to the init thread.
*/
K_KERNEL_PINNED_STACK_ARRAY_DEFINE(z_interrupt_stacks,
CONFIG_MP_MAX_NUM_CPUS,
CONFIG_ISR_STACK_SIZE);
extern void idle(void *unused1, void *unused2, void *unused3);
#ifdef CONFIG_OBJ_CORE_SYSTEM
static struct k_obj_type obj_type_cpu;
static struct k_obj_type obj_type_kernel;
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
static struct k_obj_core_stats_desc cpu_stats_desc = {
.raw_size = sizeof(struct k_cycle_stats),
.query_size = sizeof(struct k_thread_runtime_stats),
.raw = z_cpu_stats_raw,
.query = z_cpu_stats_query,
.reset = NULL,
.disable = NULL,
.enable = NULL,
};
static struct k_obj_core_stats_desc kernel_stats_desc = {
.raw_size = sizeof(struct k_cycle_stats) * CONFIG_MP_MAX_NUM_CPUS,
.query_size = sizeof(struct k_thread_runtime_stats),
.raw = z_kernel_stats_raw,
.query = z_kernel_stats_query,
.reset = NULL,
.disable = NULL,
.enable = NULL,
};
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
#endif /* CONFIG_OBJ_CORE_SYSTEM */
/* LCOV_EXCL_START
*
* This code is called so early in the boot process that code coverage
* doesn't work properly. In addition, not all arches call this code,
* some like x86 do this with optimized assembly
*/
/**
* @brief equivalent of memset() for early boot usage
*
* Architectures that can't safely use the regular (optimized) memset very
* early during boot because e.g. hardware isn't yet sufficiently initialized
* may override this with their own safe implementation.
*/
__boot_func
void __weak z_early_memset(void *dst, int c, size_t n)
{
(void) memset(dst, c, n);
}
/**
* @brief equivalent of memcpy() for early boot usage
*
* Architectures that can't safely use the regular (optimized) memcpy very
* early during boot because e.g. hardware isn't yet sufficiently initialized
* may override this with their own safe implementation.
*/
__boot_func
void __weak z_early_memcpy(void *dst, const void *src, size_t n)
{
(void) memcpy(dst, src, n);
}
/**
* @brief Clear BSS
*
* This routine clears the BSS region, so all bytes are 0.
*/
__boot_func
void z_bss_zero(void)
{
if (IS_ENABLED(CONFIG_SKIP_BSS_CLEAR)) {
return;
}
z_early_memset(__bss_start, 0, __bss_end - __bss_start);
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay)
z_early_memset(&__ccm_bss_start, 0,
(uintptr_t) &__ccm_bss_end
- (uintptr_t) &__ccm_bss_start);
#endif
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay)
z_early_memset(&__dtcm_bss_start, 0,
(uintptr_t) &__dtcm_bss_end
- (uintptr_t) &__dtcm_bss_start);
#endif
#if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ocm), okay)
z_early_memset(&__ocm_bss_start, 0,
(uintptr_t) &__ocm_bss_end
- (uintptr_t) &__ocm_bss_start);
#endif
#ifdef CONFIG_CODE_DATA_RELOCATION
extern void bss_zeroing_relocation(void);
bss_zeroing_relocation();
#endif /* CONFIG_CODE_DATA_RELOCATION */
#ifdef CONFIG_COVERAGE_GCOV
z_early_memset(&__gcov_bss_start, 0,
((uintptr_t) &__gcov_bss_end - (uintptr_t) &__gcov_bss_start));
#endif /* CONFIG_COVERAGE_GCOV */
}
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
/**
* @brief Clear BSS within the bot region
*
* This routine clears the BSS within the boot region.
* This is separate from z_bss_zero() as boot region may
* contain symbols required for the boot process before
* paging is initialized.
*/
__boot_func
void z_bss_zero_boot(void)
{
z_early_memset(&lnkr_boot_bss_start, 0,
(uintptr_t)&lnkr_boot_bss_end
- (uintptr_t)&lnkr_boot_bss_start);
}
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
#ifdef CONFIG_LINKER_USE_PINNED_SECTION
/**
* @brief Clear BSS within the pinned region
*
* This routine clears the BSS within the pinned region.
* This is separate from z_bss_zero() as pinned region may
* contain symbols required for the boot process before
* paging is initialized.
*/
#ifdef CONFIG_LINKER_USE_BOOT_SECTION
__boot_func
#else
__pinned_func
#endif /* CONFIG_LINKER_USE_BOOT_SECTION */
void z_bss_zero_pinned(void)
{
z_early_memset(&lnkr_pinned_bss_start, 0,
(uintptr_t)&lnkr_pinned_bss_end
- (uintptr_t)&lnkr_pinned_bss_start);
}
#endif /* CONFIG_LINKER_USE_PINNED_SECTION */
#ifdef CONFIG_STACK_CANARIES
#ifdef CONFIG_STACK_CANARIES_TLS
extern __thread volatile uintptr_t __stack_chk_guard;
#else
extern volatile uintptr_t __stack_chk_guard;
#endif /* CONFIG_STACK_CANARIES_TLS */
#endif /* CONFIG_STACK_CANARIES */
/* LCOV_EXCL_STOP */
__pinned_bss
bool z_sys_post_kernel;
static int do_device_init(const struct init_entry *entry)
{
const struct device *dev = entry->dev;
int rc = 0;
if (entry->init_fn.dev != NULL) {
rc = entry->init_fn.dev(dev);
/* Mark device initialized. If initialization
* failed, record the error condition.
*/
if (rc != 0) {
if (rc < 0) {
rc = -rc;
}
if (rc > UINT8_MAX) {
rc = UINT8_MAX;
}
dev->state->init_res = rc;
}
}
dev->state->initialized = true;
if (rc == 0) {
/* Run automatic device runtime enablement */
(void)pm_device_runtime_auto_enable(dev);
}
return rc;
}
/**
* @brief Execute all the init entry initialization functions at a given level
*
* @details Invokes the initialization routine for each init entry object
* created by the INIT_ENTRY_DEFINE() macro using the specified level.
* The linker script places the init entry objects in memory in the order
* they need to be invoked, with symbols indicating where one level leaves
* off and the next one begins.
*
* @param level init level to run.
*/
static void z_sys_init_run_level(enum init_level level)
{
static const struct init_entry *levels[] = {
__init_EARLY_start,
__init_PRE_KERNEL_1_start,
__init_PRE_KERNEL_2_start,
__init_POST_KERNEL_start,
__init_APPLICATION_start,
#ifdef CONFIG_SMP
__init_SMP_start,
#endif /* CONFIG_SMP */
/* End marker */
__init_end,
};
const struct init_entry *entry;
for (entry = levels[level]; entry < levels[level+1]; entry++) {
const struct device *dev = entry->dev;
if (dev != NULL) {
do_device_init(entry);
} else {
(void)entry->init_fn.sys();
}
}
}
int z_impl_device_init(const struct device *dev)
{
if (dev == NULL) {
return -ENOENT;
}
STRUCT_SECTION_FOREACH_ALTERNATE(_deferred_init, init_entry, entry) {
if (entry->dev == dev) {
return do_device_init(entry);
}
}
return -ENOENT;
}
#ifdef CONFIG_USERSPACE
static inline int z_vrfy_device_init(const struct device *dev)
{
K_OOPS(K_SYSCALL_OBJ_INIT(dev, K_OBJ_ANY));
return z_impl_device_init(dev);
}
#include <syscalls/device_init_mrsh.c>
#endif
extern void boot_banner(void);
/**
* @brief Mainline for kernel's background thread
*
* This routine completes kernel initialization by invoking the remaining
* init functions, then invokes application's main() routine.
*/
__boot_func
static void bg_thread_main(void *unused1, void *unused2, void *unused3)
{
ARG_UNUSED(unused1);
ARG_UNUSED(unused2);
ARG_UNUSED(unused3);
#ifdef CONFIG_MMU
/* Invoked here such that backing store or eviction algorithms may
* initialize kernel objects, and that all POST_KERNEL and later tasks
* may perform memory management tasks (except for z_phys_map() which
* is allowed at any time)
*/
z_mem_manage_init();
#endif /* CONFIG_MMU */
z_sys_post_kernel = true;
z_sys_init_run_level(INIT_LEVEL_POST_KERNEL);
#if defined(CONFIG_STACK_POINTER_RANDOM) && (CONFIG_STACK_POINTER_RANDOM != 0)
z_stack_adjust_initialized = 1;
#endif /* CONFIG_STACK_POINTER_RANDOM */
boot_banner();
#if defined(CONFIG_CPP)
void z_cpp_init_static(void);
z_cpp_init_static();
#endif /* CONFIG_CPP */
/* Final init level before app starts */
z_sys_init_run_level(INIT_LEVEL_APPLICATION);
z_init_static_threads();
#ifdef CONFIG_KERNEL_COHERENCE
__ASSERT_NO_MSG(arch_mem_coherent(&_kernel));
#endif /* CONFIG_KERNEL_COHERENCE */
#ifdef CONFIG_SMP
if (!IS_ENABLED(CONFIG_SMP_BOOT_DELAY)) {
z_smp_init();
}
z_sys_init_run_level(INIT_LEVEL_SMP);
#endif /* CONFIG_SMP */
#ifdef CONFIG_MMU
z_mem_manage_boot_finish();
#endif /* CONFIG_MMU */
extern int main(void);
(void)main();
/* Mark non-essential since main() has no more work to do */
z_thread_essential_clear(&z_main_thread);
#ifdef CONFIG_COVERAGE_DUMP
/* Dump coverage data once the main() has exited. */
gcov_coverage_dump();
#endif /* CONFIG_COVERAGE_DUMP */
} /* LCOV_EXCL_LINE ... because we just dumped final coverage data */
#if defined(CONFIG_MULTITHREADING)
__boot_func
static void init_idle_thread(int i)
{
struct k_thread *thread = &z_idle_threads[i];
k_thread_stack_t *stack = z_idle_stacks[i];
#ifdef CONFIG_THREAD_NAME
#if CONFIG_MP_MAX_NUM_CPUS > 1
char tname[8];
snprintk(tname, 8, "idle %02d", i);
#else
char *tname = "idle";
#endif /* CONFIG_MP_MAX_NUM_CPUS */
#else
char *tname = NULL;
#endif /* CONFIG_THREAD_NAME */
z_setup_new_thread(thread, stack,
CONFIG_IDLE_STACK_SIZE, idle, &_kernel.cpus[i],
NULL, NULL, K_IDLE_PRIO, K_ESSENTIAL,
tname);
z_mark_thread_as_started(thread);
#ifdef CONFIG_SMP
thread->base.is_idle = 1U;
#endif /* CONFIG_SMP */
}
void z_init_cpu(int id)
{
init_idle_thread(id);
_kernel.cpus[id].idle_thread = &z_idle_threads[id];
_kernel.cpus[id].id = id;
_kernel.cpus[id].irq_stack =
(K_KERNEL_STACK_BUFFER(z_interrupt_stacks[id]) +
K_KERNEL_STACK_SIZEOF(z_interrupt_stacks[id]));
#ifdef CONFIG_SCHED_THREAD_USAGE_ALL
_kernel.cpus[id].usage = &_kernel.usage[id];
_kernel.cpus[id].usage->track_usage =
CONFIG_SCHED_THREAD_USAGE_AUTO_ENABLE;
#endif
/*
* Increment number of CPUs active. The pm subsystem
* will keep track of this from here.
*/
atomic_inc(&_cpus_active);
#ifdef CONFIG_OBJ_CORE_SYSTEM
k_obj_core_init_and_link(K_OBJ_CORE(&_kernel.cpus[id]), &obj_type_cpu);
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
k_obj_core_stats_register(K_OBJ_CORE(&_kernel.cpus[id]),
_kernel.cpus[id].usage,
sizeof(struct k_cycle_stats));
#endif
#endif
}
/**
*
* @brief Initializes kernel data structures
*
* This routine initializes various kernel data structures, including
* the init and idle threads and any architecture-specific initialization.
*
* Note that all fields of "_kernel" are set to zero on entry, which may
* be all the initialization many of them require.
*
* @return initial stack pointer for the main thread
*/
__boot_func
static char *prepare_multithreading(void)
{
char *stack_ptr;
/* _kernel.ready_q is all zeroes */
z_sched_init();
#ifndef CONFIG_SMP
/*
* prime the cache with the main thread since:
*
* - the cache can never be NULL
* - the main thread will be the one to run first
* - no other thread is initialized yet and thus their priority fields
* contain garbage, which would prevent the cache loading algorithm
* to work as intended
*/
_kernel.ready_q.cache = &z_main_thread;
#endif /* CONFIG_SMP */
stack_ptr = z_setup_new_thread(&z_main_thread, z_main_stack,
CONFIG_MAIN_STACK_SIZE, bg_thread_main,
NULL, NULL, NULL,
CONFIG_MAIN_THREAD_PRIORITY,
K_ESSENTIAL, "main");
z_mark_thread_as_started(&z_main_thread);
z_ready_thread(&z_main_thread);
z_init_cpu(0);
return stack_ptr;
}
__boot_func
static FUNC_NORETURN void switch_to_main_thread(char *stack_ptr)
{
#ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN
arch_switch_to_main_thread(&z_main_thread, stack_ptr, bg_thread_main);
#else
ARG_UNUSED(stack_ptr);
/*
* Context switch to main task (entry function is _main()): the
* current fake thread is not on a wait queue or ready queue, so it
* will never be rescheduled in.
*/
z_swap_unlocked();
#endif /* CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN */
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
#endif /* CONFIG_MULTITHREADING */
__boot_func
void __weak z_early_rand_get(uint8_t *buf, size_t length)
{
static uint64_t state = (uint64_t)CONFIG_TIMER_RANDOM_INITIAL_STATE;
int rc;
#ifdef CONFIG_ENTROPY_HAS_DRIVER
const struct device *const entropy = DEVICE_DT_GET_OR_NULL(DT_CHOSEN(zephyr_entropy));
if ((entropy != NULL) && device_is_ready(entropy)) {
/* Try to see if driver provides an ISR-specific API */
rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT);
if (rc > 0) {
length -= rc;
buf += rc;
}
}
#endif /* CONFIG_ENTROPY_HAS_DRIVER */
while (length > 0) {
uint32_t val;
state = state + k_cycle_get_32();
state = state * 2862933555777941757ULL + 3037000493ULL;
val = (uint32_t)(state >> 32);
rc = MIN(length, sizeof(val));
z_early_memcpy((void *)buf, &val, rc);
length -= rc;
buf += rc;
}
}
/**
*
* @brief Initialize kernel
*
* This routine is invoked when the system is ready to run C code. The
* processor must be running in 32-bit mode, and the BSS must have been
* cleared/zeroed.
*
* @return Does not return
*/
__boot_func
FUNC_NO_STACK_PROTECTOR
FUNC_NORETURN void z_cstart(void)
{
/* gcov hook needed to get the coverage report.*/
gcov_static_init();
/* initialize early init calls */
z_sys_init_run_level(INIT_LEVEL_EARLY);
/* perform any architecture-specific initialization */
arch_kernel_init();
LOG_CORE_INIT();
#if defined(CONFIG_MULTITHREADING)
z_dummy_thread_init(&_thread_dummy);
#endif /* CONFIG_MULTITHREADING */
/* do any necessary initialization of static devices */
z_device_state_init();
/* perform basic hardware initialization */
z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_1);
z_sys_init_run_level(INIT_LEVEL_PRE_KERNEL_2);
#ifdef CONFIG_STACK_CANARIES
uintptr_t stack_guard;
z_early_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard));
__stack_chk_guard = stack_guard;
__stack_chk_guard <<= 8;
#endif /* CONFIG_STACK_CANARIES */
#ifdef CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT
timing_init();
timing_start();
#endif /* CONFIG_TIMING_FUNCTIONS_NEED_AT_BOOT */
#ifdef CONFIG_MULTITHREADING
switch_to_main_thread(prepare_multithreading());
#else
#ifdef ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING
/* Custom ARCH-specific routine to switch to main()
* in the case of no multi-threading.
*/
ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING(bg_thread_main,
NULL, NULL, NULL);
#else
bg_thread_main(NULL, NULL, NULL);
/* LCOV_EXCL_START
* We've already dumped coverage data at this point.
*/
irq_lock();
while (true) {
}
/* LCOV_EXCL_STOP */
#endif /* ARCH_SWITCH_TO_MAIN_NO_MULTITHREADING */
#endif /* CONFIG_MULTITHREADING */
/*
* Compiler can't tell that the above routines won't return and issues
* a warning unless we explicitly tell it that control never gets this
* far.
*/
CODE_UNREACHABLE; /* LCOV_EXCL_LINE */
}
#ifdef CONFIG_OBJ_CORE_SYSTEM
static int init_cpu_obj_core_list(void)
{
/* Initialize CPU object type */
z_obj_type_init(&obj_type_cpu, K_OBJ_TYPE_CPU_ID,
offsetof(struct _cpu, obj_core));
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
k_obj_type_stats_init(&obj_type_cpu, &cpu_stats_desc);
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
return 0;
}
static int init_kernel_obj_core_list(void)
{
/* Initialize kernel object type */
z_obj_type_init(&obj_type_kernel, K_OBJ_TYPE_KERNEL_ID,
offsetof(struct z_kernel, obj_core));
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
k_obj_type_stats_init(&obj_type_kernel, &kernel_stats_desc);
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
k_obj_core_init_and_link(K_OBJ_CORE(&_kernel), &obj_type_kernel);
#ifdef CONFIG_OBJ_CORE_STATS_SYSTEM
k_obj_core_stats_register(K_OBJ_CORE(&_kernel), _kernel.usage,
sizeof(_kernel.usage));
#endif /* CONFIG_OBJ_CORE_STATS_SYSTEM */
return 0;
}
SYS_INIT(init_cpu_obj_core_list, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
SYS_INIT(init_kernel_obj_core_list, PRE_KERNEL_1,
CONFIG_KERNEL_INIT_PRIORITY_OBJECTS);
#endif /* CONFIG_OBJ_CORE_SYSTEM */