zephyr/include/zephyr/sys/kobject.h
Yong Cong Sin bbe5e1e6eb build: namespace the generated headers with zephyr/
Namespaced the generated headers with `zephyr` to prevent
potential conflict with other headers.

Introduce a temporary Kconfig `LEGACY_GENERATED_INCLUDE_PATH`
that is enabled by default. This allows the developers to
continue the use of the old include paths for the time being
until it is deprecated and eventually removed. The Kconfig will
generate a build-time warning message, similar to the
`CONFIG_TIMER_RANDOM_GENERATOR`.

Updated the includes path of in-tree sources accordingly.

Most of the changes here are scripted, check the PR for more
info.

Signed-off-by: Yong Cong Sin <ycsin@meta.com>
2024-05-28 22:03:55 +02:00

292 lines
7.9 KiB
C

/*
* Copyright (c) 2020 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef ZEPHYR_INCLUDE_SYS_KOBJECT_H
#define ZEPHYR_INCLUDE_SYS_KOBJECT_H
#include <stdint.h>
#include <stddef.h>
#include <zephyr/sys/iterable_sections.h>
#include <zephyr/sys/internal/kobject_internal.h>
#ifdef __cplusplus
extern "C" {
#endif
struct k_thread;
struct k_mutex;
struct z_futex_data;
/**
* @brief Kernel Object Types
*
* This enumeration needs to be kept in sync with the lists of kernel objects
* and subsystems in scripts/build/gen_kobject_list.py, as well as the otype_to_str()
* function in kernel/userspace.c
*/
enum k_objects {
K_OBJ_ANY,
/** @cond
* Doxygen should ignore this build-time generated include file
* when generating API documentation. Enumeration values are
* generated during build by gen_kobject_list.py. It includes
* basic kernel objects (e.g. pipes and mutexes) and driver types.
*/
#include <zephyr/kobj-types-enum.h>
/** @endcond
*/
K_OBJ_LAST
};
/**
* @defgroup usermode_apis User Mode APIs
* @ingroup kernel_apis
* @{
*/
#ifdef CONFIG_USERSPACE
/**
* @brief Grant a static thread access to a list of kernel objects
*
* For threads declared with K_THREAD_DEFINE(), grant the thread access to
* a set of kernel objects. These objects do not need to be in an initialized
* state. The permissions will be granted when the threads are initialized
* in the early boot sequence.
*
* All arguments beyond the first must be pointers to kernel objects.
*
* @param name_ Name of the thread, as passed to K_THREAD_DEFINE()
*/
#define K_THREAD_ACCESS_GRANT(name_, ...) \
static void * const _CONCAT(_object_list_, name_)[] = \
{ __VA_ARGS__, NULL }; \
static const STRUCT_SECTION_ITERABLE(k_object_assignment, \
_CONCAT(_object_access_, name_)) = \
{ (&_k_thread_obj_ ## name_), \
(_CONCAT(_object_list_, name_)) }
/** Object initialized */
#define K_OBJ_FLAG_INITIALIZED BIT(0)
/** Object is Public */
#define K_OBJ_FLAG_PUBLIC BIT(1)
/** Object allocated */
#define K_OBJ_FLAG_ALLOC BIT(2)
/** Driver Object */
#define K_OBJ_FLAG_DRIVER BIT(3)
/**
* Grant a thread access to a kernel object
*
* The thread will be granted access to the object if the caller is from
* supervisor mode, or the caller is from user mode AND has permissions
* on both the object and the thread whose access is being granted.
*
* @param object Address of kernel object
* @param thread Thread to grant access to the object
*/
__syscall void k_object_access_grant(const void *object,
struct k_thread *thread);
/**
* Revoke a thread's access to a kernel object
*
* The thread will lose access to the object if the caller is from
* supervisor mode, or the caller is from user mode AND has permissions
* on both the object and the thread whose access is being revoked.
*
* @param object Address of kernel object
* @param thread Thread to remove access to the object
*/
void k_object_access_revoke(const void *object, struct k_thread *thread);
/**
* @brief Release an object
*
* Allows user threads to drop their own permission on an object
* Their permissions are automatically cleared when a thread terminates.
*
* @param object The object to be released
*
*/
__syscall void k_object_release(const void *object);
/**
* Grant all present and future threads access to an object
*
* If the caller is from supervisor mode, or the caller is from user mode and
* have sufficient permissions on the object, then that object will have
* permissions granted to it for *all* current and future threads running in
* the system, effectively becoming a public kernel object.
*
* Use of this API should be avoided on systems that are running untrusted code
* as it is possible for such code to derive the addresses of kernel objects
* and perform unwanted operations on them.
*
* It is not possible to revoke permissions on public objects; once public,
* any thread may use it.
*
* @param object Address of kernel object
*/
void k_object_access_all_grant(const void *object);
/**
* Check if a kernel object is of certain type and is valid.
*
* This checks if the kernel object exists, of certain type,
* and has been initialized.
*
* @param obj Address of the kernel object
* @param otype Object type (use K_OBJ_ANY for ignoring type checking)
* @return True if kernel object (@a obj) exists, of certain type, and
* has been initialized. False otherwise.
*/
bool k_object_is_valid(const void *obj, enum k_objects otype);
#else
/* LCOV_EXCL_START */
#define K_THREAD_ACCESS_GRANT(thread, ...)
/**
* @internal
*/
static inline void z_impl_k_object_access_grant(const void *object,
struct k_thread *thread)
{
ARG_UNUSED(object);
ARG_UNUSED(thread);
}
/**
* @internal
*/
static inline void k_object_access_revoke(const void *object,
struct k_thread *thread)
{
ARG_UNUSED(object);
ARG_UNUSED(thread);
}
/**
* @internal
*/
static inline void z_impl_k_object_release(const void *object)
{
ARG_UNUSED(object);
}
static inline void k_object_access_all_grant(const void *object)
{
ARG_UNUSED(object);
}
static inline bool k_object_is_valid(const void *obj, enum k_objects otype)
{
ARG_UNUSED(obj);
ARG_UNUSED(otype);
return true;
}
/* LCOV_EXCL_STOP */
#endif /* !CONFIG_USERSPACE */
#if defined(CONFIG_DYNAMIC_OBJECTS) || defined(__DOXYGEN__)
/**
* Allocate a kernel object of a designated type
*
* This will instantiate at runtime a kernel object of the specified type,
* returning a pointer to it. The object will be returned in an uninitialized
* state, with the calling thread being granted permission on it. The memory
* for the object will be allocated out of the calling thread's resource pool.
*
* @note This function is available only if @kconfig{CONFIG_DYNAMIC_OBJECTS}
* is selected.
*
* @note Thread stack object has to use k_object_alloc_size() since stacks may
* have different sizes.
*
* @param otype Requested kernel object type
* @return A pointer to the allocated kernel object, or NULL if memory wasn't
* available
*/
__syscall void *k_object_alloc(enum k_objects otype);
/**
* Allocate a kernel object of a designated type and a given size
*
* This will instantiate at runtime a kernel object of the specified type,
* returning a pointer to it. The object will be returned in an uninitialized
* state, with the calling thread being granted permission on it. The memory
* for the object will be allocated out of the calling thread's resource pool.
*
* This function is specially helpful for thread stack objects because
* their sizes can vary. Other objects should probably look k_object_alloc().
*
* @note This function is available only if @kconfig{CONFIG_DYNAMIC_OBJECTS}
* is selected.
*
* @param otype Requested kernel object type
* @param size Requested kernel object size
* @return A pointer to the allocated kernel object, or NULL if memory wasn't
* available
*/
__syscall void *k_object_alloc_size(enum k_objects otype, size_t size);
/**
* Free a kernel object previously allocated with k_object_alloc()
*
* This will return memory for a kernel object back to resource pool it was
* allocated from. Care must be exercised that the object will not be used
* during or after when this call is made.
*
* @note This function is available only if @kconfig{CONFIG_DYNAMIC_OBJECTS}
* is selected.
*
* @param obj Pointer to the kernel object memory address.
*/
void k_object_free(void *obj);
#else
/* LCOV_EXCL_START */
static inline void *z_impl_k_object_alloc(enum k_objects otype)
{
ARG_UNUSED(otype);
return NULL;
}
static inline void *z_impl_k_object_alloc_size(enum k_objects otype,
size_t size)
{
ARG_UNUSED(otype);
ARG_UNUSED(size);
return NULL;
}
/**
* @brief Free an object
*
* @param obj
*/
static inline void k_object_free(void *obj)
{
ARG_UNUSED(obj);
}
/* LCOV_EXCL_STOP */
#endif /* CONFIG_DYNAMIC_OBJECTS */
/** @} */
#include <zephyr/syscalls/kobject.h>
#ifdef __cplusplus
}
#endif
#endif