zephyr/drivers/timer/apic_timer.c
Nicolas Pitre 99dcbdf933 drivers/timer/apic_timer: move to periodic mode
This driver is impossible to make time-accurate using single-shot
mode. Time accuracy may be obtained only by using periodic mode, meaning
it is not tickless capable either. Let's simplify the code by only
supporting periodic mode and strip out the TSC stuff. Any hardware with
TSC capability should now use the apic-tsc driver instead.

Signed-off-by: Nicolas Pitre <npitre@baylibre.com>
2024-05-29 08:40:43 +02:00

118 lines
3.1 KiB
C

/*
* Copyright (c) 2019 Intel Corporation
* SPDX-License-Identifier: Apache-2.0
*/
#include <zephyr/init.h>
#include <zephyr/drivers/timer/system_timer.h>
#include <zephyr/sys_clock.h>
#include <zephyr/spinlock.h>
#include <zephyr/drivers/interrupt_controller/loapic.h>
#include <zephyr/irq.h>
BUILD_ASSERT(!IS_ENABLED(CONFIG_TICKLESS_KERNEL), "this is a tickfull driver");
/*
* Overview:
*
* This driver enables the local APIC as the Zephyr system timer. It supports
* legacy ("tickful") mode only. The driver will work with any APIC that has
* the ARAT "always running APIC timer" feature (CPUID 0x06, EAX bit 2).
*
* Configuration:
*
* CONFIG_APIC_TIMER=y enables this timer driver.
* CONFIG_APIC_TIMER_IRQ=<irq> which IRQ to configure for the timer.
* CONFIG_APIC_TIMER_IRQ_PRIORITY=<p> priority for IRQ_CONNECT()
*
* CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=<hz> must contain the frequency seen
* by the local APIC timer block (before it gets to the timer divider).
*/
/* These should be merged into include/drivers/interrupt_controller/loapic.h. */
#define DCR_DIVIDER_MASK 0x0000000F /* divider bits */
#define DCR_DIVIDER 0x0000000B /* divide by 1 */
#define LVT_MODE_MASK 0x00060000 /* timer mode bits */
#define LVT_MODE 0x00020000 /* periodic mode */
#if defined(CONFIG_TEST)
const int32_t z_sys_timer_irq_for_test = CONFIG_APIC_TIMER_IRQ;
#endif
#define CYCLES_PER_TICK \
(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC)
BUILD_ASSERT(CYCLES_PER_TICK >= 1, "APIC timer: bad CYCLES_PER_TICK");
static volatile uint64_t total_cycles;
static void isr(const void *arg)
{
ARG_UNUSED(arg);
total_cycles += CYCLES_PER_TICK;
sys_clock_announce(1);
}
uint32_t sys_clock_elapsed(void)
{
return 0U;
}
uint64_t sys_clock_cycle_get_64(void)
{
uint32_t ccr_1st, ccr_2nd;
uint64_t cycles;
/*
* We may race with CCR reaching 0 and reloading, and the interrupt
* handler updating total_cycles. Let's make sure we sample everything
* away from this roll-over transition by ensuring consecutive CCR
* values are descending so we're sure the enclosed (volatile)
* total_cycles sample and CCR value are coherent with each other.
*/
do {
ccr_1st = x86_read_loapic(LOAPIC_TIMER_CCR);
cycles = total_cycles;
ccr_2nd = x86_read_loapic(LOAPIC_TIMER_CCR);
} while (ccr_2nd > ccr_1st);
return cycles + (CYCLES_PER_TICK - ccr_2nd);
}
uint32_t sys_clock_cycle_get_32(void)
{
return (uint32_t)sys_clock_cycle_get_64();
}
static int sys_clock_driver_init(void)
{
uint32_t val;
val = x86_read_loapic(LOAPIC_TIMER_CONFIG); /* set divider */
val &= ~DCR_DIVIDER_MASK;
val |= DCR_DIVIDER;
x86_write_loapic(LOAPIC_TIMER_CONFIG, val);
val = x86_read_loapic(LOAPIC_TIMER); /* set timer mode */
val &= ~LVT_MODE_MASK;
val |= LVT_MODE;
x86_write_loapic(LOAPIC_TIMER, val);
/* remember, wiring up the interrupt will mess with the LVT, too */
IRQ_CONNECT(CONFIG_APIC_TIMER_IRQ,
CONFIG_APIC_TIMER_IRQ_PRIORITY,
isr, 0, 0);
x86_write_loapic(LOAPIC_TIMER_ICR, CYCLES_PER_TICK);
irq_enable(CONFIG_APIC_TIMER_IRQ);
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);