zephyr/drivers/i2c/i2c_ambiq.c
Hao Luo c8ae26549d drivers: i2c: Add support for Apollo3 SoCs I2C
This commit adds support for the I2C which
can be found in Apollo3 SoCs, it can work in
both DMA and non-DMA modes

Signed-off-by: Hao Luo <hluo@ambiq.com>
2024-05-21 20:55:34 -04:00

294 lines
9.1 KiB
C

/*
* Copyright (c) 2023 Antmicro <www.antmicro.com>
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT ambiq_i2c
#include <errno.h>
#include <zephyr/drivers/i2c.h>
#include <zephyr/kernel.h>
#include <am_mcu_apollo.h>
#include <zephyr/logging/log.h>
#include <zephyr/drivers/pinctrl.h>
LOG_MODULE_REGISTER(ambiq_i2c, CONFIG_I2C_LOG_LEVEL);
typedef int (*ambiq_i2c_pwr_func_t)(void);
#define PWRCTRL_MAX_WAIT_US 5
#define I2C_TRANSFER_TIMEOUT_MSEC 500 /* Transfer timeout period */
#include "i2c-priv.h"
struct i2c_ambiq_config {
uint32_t base;
int size;
uint32_t bitrate;
const struct pinctrl_dev_config *pcfg;
ambiq_i2c_pwr_func_t pwr_func;
void (*irq_config_func)(void);
};
typedef void (*i2c_ambiq_callback_t)(const struct device *dev, int result, void *data);
struct i2c_ambiq_data {
am_hal_iom_config_t iom_cfg;
void *iom_handler;
struct k_sem bus_sem;
struct k_sem transfer_sem;
i2c_ambiq_callback_t callback;
void *callback_data;
int inst_idx;
uint32_t transfer_status;
};
#ifdef CONFIG_I2C_AMBIQ_DMA
static __aligned(32) struct {
__aligned(32) uint32_t buf[CONFIG_I2C_DMA_TCB_BUFFER_SIZE];
} i2c_dma_tcb_buf[DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT)] __attribute__((__section__(".nocache")));
static void i2c_ambiq_callback(void *callback_ctxt, uint32_t status)
{
const struct device *dev = callback_ctxt;
struct i2c_ambiq_data *data = dev->data;
if (data->callback) {
data->callback(dev, status, data->callback_data);
}
data->transfer_status = status;
k_sem_give(&data->transfer_sem);
}
#endif
static void i2c_ambiq_isr(const struct device *dev)
{
uint32_t ui32Status;
struct i2c_ambiq_data *data = dev->data;
am_hal_iom_interrupt_status_get(data->iom_handler, false, &ui32Status);
am_hal_iom_interrupt_clear(data->iom_handler, ui32Status);
am_hal_iom_interrupt_service(data->iom_handler, ui32Status);
}
static int i2c_ambiq_read(const struct device *dev, struct i2c_msg *msg, uint16_t addr)
{
struct i2c_ambiq_data *data = dev->data;
int ret = 0;
am_hal_iom_transfer_t trans = {0};
trans.ui8Priority = 1;
trans.eDirection = AM_HAL_IOM_RX;
trans.uPeerInfo.ui32I2CDevAddr = addr;
trans.ui32NumBytes = msg->len;
trans.pui32RxBuffer = (uint32_t *)msg->buf;
#ifdef CONFIG_I2C_AMBIQ_DMA
data->transfer_status = -EFAULT;
ret = am_hal_iom_nonblocking_transfer(data->iom_handler, &trans, i2c_ambiq_callback,
(void *)dev);
if (k_sem_take(&data->transfer_sem, K_MSEC(I2C_TRANSFER_TIMEOUT_MSEC))) {
LOG_ERR("Timeout waiting for transfer complete");
/* cancel timed out transaction */
am_hal_iom_disable(data->iom_handler);
/* clean up for next xfer */
k_sem_reset(&data->transfer_sem);
am_hal_iom_enable(data->iom_handler);
return -ETIMEDOUT;
}
ret = data->transfer_status;
#else
ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans);
#endif
return (ret != AM_HAL_STATUS_SUCCESS) ? -EIO : 0;
}
static int i2c_ambiq_write(const struct device *dev, struct i2c_msg *msg, uint16_t addr)
{
struct i2c_ambiq_data *data = dev->data;
int ret = 0;
am_hal_iom_transfer_t trans = {0};
trans.ui8Priority = 1;
trans.eDirection = AM_HAL_IOM_TX;
trans.uPeerInfo.ui32I2CDevAddr = addr;
trans.ui32NumBytes = msg->len;
trans.pui32TxBuffer = (uint32_t *)msg->buf;
#ifdef CONFIG_I2C_AMBIQ_DMA
data->transfer_status = -EFAULT;
ret = am_hal_iom_nonblocking_transfer(data->iom_handler, &trans, i2c_ambiq_callback,
(void *)dev);
if (k_sem_take(&data->transfer_sem, K_MSEC(I2C_TRANSFER_TIMEOUT_MSEC))) {
LOG_ERR("Timeout waiting for transfer complete");
/* cancel timed out transaction */
am_hal_iom_disable(data->iom_handler);
/* clean up for next xfer */
k_sem_reset(&data->transfer_sem);
am_hal_iom_enable(data->iom_handler);
return -ETIMEDOUT;
}
ret = data->transfer_status;
#else
ret = am_hal_iom_blocking_transfer(data->iom_handler, &trans);
#endif
return (ret != AM_HAL_STATUS_SUCCESS) ? -EIO : 0;
}
static int i2c_ambiq_configure(const struct device *dev, uint32_t dev_config)
{
struct i2c_ambiq_data *data = dev->data;
if (!(I2C_MODE_CONTROLLER & dev_config)) {
return -EINVAL;
}
switch (I2C_SPEED_GET(dev_config)) {
case I2C_SPEED_STANDARD:
data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_100KHZ;
break;
case I2C_SPEED_FAST:
data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_400KHZ;
break;
case I2C_SPEED_FAST_PLUS:
data->iom_cfg.ui32ClockFreq = AM_HAL_IOM_1MHZ;
break;
default:
return -EINVAL;
}
#ifdef CONFIG_I2C_AMBIQ_DMA
data->iom_cfg.pNBTxnBuf = i2c_dma_tcb_buf[data->inst_idx].buf;
data->iom_cfg.ui32NBTxnBufLength = CONFIG_I2C_DMA_TCB_BUFFER_SIZE;
#endif
am_hal_iom_configure(data->iom_handler, &data->iom_cfg);
return 0;
}
static int i2c_ambiq_transfer(const struct device *dev, struct i2c_msg *msgs, uint8_t num_msgs,
uint16_t addr)
{
struct i2c_ambiq_data *data = dev->data;
int ret = 0;
if (!num_msgs) {
return 0;
}
/* Send out messages */
k_sem_take(&data->bus_sem, K_FOREVER);
for (int i = 0; i < num_msgs; i++) {
if (msgs[i].flags & I2C_MSG_READ) {
ret = i2c_ambiq_read(dev, &(msgs[i]), addr);
} else {
ret = i2c_ambiq_write(dev, &(msgs[i]), addr);
}
if (ret != 0) {
return ret;
}
}
k_sem_give(&data->bus_sem);
return 0;
}
static int i2c_ambiq_init(const struct device *dev)
{
struct i2c_ambiq_data *data = dev->data;
const struct i2c_ambiq_config *config = dev->config;
uint32_t bitrate_cfg = i2c_map_dt_bitrate(config->bitrate);
int ret = 0;
data->iom_cfg.eInterfaceMode = AM_HAL_IOM_I2C_MODE;
if (AM_HAL_STATUS_SUCCESS !=
am_hal_iom_initialize((config->base - REG_IOM_BASEADDR) / config->size,
&data->iom_handler)) {
LOG_ERR("Fail to initialize I2C\n");
return -ENXIO;
}
ret = config->pwr_func();
ret |= i2c_ambiq_configure(dev, I2C_MODE_CONTROLLER | bitrate_cfg);
if (ret < 0) {
LOG_ERR("Fail to config I2C\n");
goto end;
}
ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT);
if (ret < 0) {
LOG_ERR("Fail to config I2C pins\n");
goto end;
}
#ifdef CONFIG_I2C_AMBIQ_DMA
am_hal_iom_interrupt_clear(data->iom_handler, AM_HAL_IOM_INT_CQUPD | AM_HAL_IOM_INT_ERR);
am_hal_iom_interrupt_enable(data->iom_handler, AM_HAL_IOM_INT_CQUPD | AM_HAL_IOM_INT_ERR);
config->irq_config_func();
#endif
if (AM_HAL_STATUS_SUCCESS != am_hal_iom_enable(data->iom_handler)) {
LOG_ERR("Fail to enable I2C\n");
ret = -EIO;
}
end:
if (ret < 0) {
am_hal_iom_uninitialize(data->iom_handler);
}
return ret;
}
static const struct i2c_driver_api i2c_ambiq_driver_api = {
.configure = i2c_ambiq_configure,
.transfer = i2c_ambiq_transfer,
};
#define AMBIQ_I2C_DEFINE(n) \
PINCTRL_DT_INST_DEFINE(n); \
static int pwr_on_ambiq_i2c_##n(void) \
{ \
uint32_t addr = DT_REG_ADDR(DT_INST_PHANDLE(n, ambiq_pwrcfg)) + \
DT_INST_PHA(n, ambiq_pwrcfg, offset); \
sys_write32((sys_read32(addr) | DT_INST_PHA(n, ambiq_pwrcfg, mask)), addr); \
k_busy_wait(PWRCTRL_MAX_WAIT_US); \
return 0; \
} \
static void i2c_irq_config_func_##n(void) \
{ \
IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), i2c_ambiq_isr, \
DEVICE_DT_INST_GET(n), 0); \
irq_enable(DT_INST_IRQN(n)); \
}; \
static struct i2c_ambiq_data i2c_ambiq_data##n = { \
.bus_sem = Z_SEM_INITIALIZER(i2c_ambiq_data##n.bus_sem, 1, 1), \
.transfer_sem = Z_SEM_INITIALIZER(i2c_ambiq_data##n.transfer_sem, 0, 1), \
.inst_idx = n, \
}; \
static const struct i2c_ambiq_config i2c_ambiq_config##n = { \
.base = DT_INST_REG_ADDR(n), \
.size = DT_INST_REG_SIZE(n), \
.bitrate = DT_INST_PROP(n, clock_frequency), \
.pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \
.irq_config_func = i2c_irq_config_func_##n, \
.pwr_func = pwr_on_ambiq_i2c_##n}; \
I2C_DEVICE_DT_INST_DEFINE(n, i2c_ambiq_init, NULL, &i2c_ambiq_data##n, \
&i2c_ambiq_config##n, POST_KERNEL, CONFIG_I2C_INIT_PRIORITY, \
&i2c_ambiq_driver_api);
DT_INST_FOREACH_STATUS_OKAY(AMBIQ_I2C_DEFINE)