/* * Copyright (c) 2021 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Driver to utilize TLB on Intel Audio DSP * * TLB (Translation Lookup Buffer) table is used to map between * physical and virtual memory. This is global to all cores * on the DSP, as changes to the TLB table are visible to * all cores. * * Note that all passed in addresses should be in cached range * (aka cached addresses). Due to the need to calculate TLB * indexes, virtual addresses will be converted internally to * cached one via z_soc_cached_ptr(). However, physical addresses * are untouched. */ #define DT_DRV_COMPAT intel_adsp_tlb #include #include #include #include #include #include #include #include #include #include #include #include "mm_drv_common.h" DEVICE_MMIO_TOPLEVEL_STATIC(tlb_regs, DT_DRV_INST(0)); #define TLB_BASE \ ((mm_reg_t)DEVICE_MMIO_TOPLEVEL_GET(tlb_regs)) /* * Number of significant bits in the page index (defines the size of * the table) */ #if defined(CONFIG_SOC_SERIES_INTEL_ACE1X) # include # define TLB_PADDR_SIZE 12 # define TLB_EXEC_BIT BIT(14) # define TLB_WRITE_BIT BIT(15) #endif #define TLB_ENTRY_NUM (1 << TLB_PADDR_SIZE) #define TLB_PADDR_MASK ((1 << TLB_PADDR_SIZE) - 1) #define TLB_ENABLE_BIT BIT(TLB_PADDR_SIZE) /* This is used to translate from TLB entry back to physical address. */ #define TLB_PHYS_BASE \ (((L2_SRAM_BASE / CONFIG_MM_DRV_PAGE_SIZE) & ~TLB_PADDR_MASK) * CONFIG_MM_DRV_PAGE_SIZE) #define HPSRAM_SEGMENTS(hpsram_ebb_quantity) \ ((ROUND_DOWN((hpsram_ebb_quantity) + 31u, 32u) / 32u) - 1u) #define L2_SRAM_PAGES_NUM (L2_SRAM_SIZE / CONFIG_MM_DRV_PAGE_SIZE) #define MAX_EBB_BANKS_IN_SEGMENT 32 #define SRAM_BANK_SIZE (128 * 1024) #define L2_SRAM_BANK_NUM (L2_SRAM_SIZE / SRAM_BANK_SIZE) #define IS_BIT_SET(value, idx) ((value) & (1 << (idx))) static struct k_spinlock tlb_lock; extern struct k_spinlock sys_mm_drv_common_lock; static int hpsram_ref[L2_SRAM_BANK_NUM]; /* declare L2 physical memory block */ SYS_MEM_BLOCKS_DEFINE_WITH_EXT_BUF( L2_PHYS_SRAM_REGION, CONFIG_MM_DRV_PAGE_SIZE, L2_SRAM_PAGES_NUM, (uint8_t *) L2_SRAM_BASE); /* Define a marker which is placed by the linker script just after * last explicitly defined section. All .text, .data, .bss and .heap * sections should be placed before this marker in the memory. * This driver is using the location of the marker to * unmap the unused L2 memory and power off corresponding memory banks. */ __attribute__((__section__(".unused_ram_start_marker"))) static int unused_l2_sram_start_marker = 0xba0babce; /** * Calculate TLB entry based on physical address. * * @param pa Page-aligned virutal address. * @return TLB entry value. */ static inline uint16_t pa_to_tlb_entry(uintptr_t pa) { return (((pa) / CONFIG_MM_DRV_PAGE_SIZE) & TLB_PADDR_MASK); } /** * Calculate physical address based on TLB entry. * * @param tlb_entry TLB entry value. * @return physcial address pointer. */ static inline uintptr_t tlb_entry_to_pa(uint16_t tlb_entry) { return ((((tlb_entry) & TLB_PADDR_MASK) * CONFIG_MM_DRV_PAGE_SIZE) + TLB_PHYS_BASE); } /** * Calculate the index to the TLB table. * * @param vaddr Page-aligned virutal address. * @return Index to the TLB table. */ static uint32_t get_tlb_entry_idx(uintptr_t vaddr) { return (POINTER_TO_UINT(vaddr) - CONFIG_KERNEL_VM_BASE) / CONFIG_MM_DRV_PAGE_SIZE; } /** * Calculate the index of the HPSRAM bank. * * @param pa physical address. * @return Index of the HPSRAM bank. */ static uint32_t get_hpsram_bank_idx(uintptr_t pa) { uint32_t phys_offset = pa - L2_SRAM_BASE; return (phys_offset / SRAM_BANK_SIZE); } /** * Convert the SYS_MM_MEM_PERM_* flags into TLB entry permission bits. * * @param flags Access flags (SYS_MM_MEM_PERM_*) * @return TLB entry permission bits */ static uint16_t flags_to_tlb_perms(uint32_t flags) { #if defined(CONFIG_SOC_SERIES_INTEL_ACE1X) uint16_t perms = 0; if ((flags & SYS_MM_MEM_PERM_RW) == SYS_MM_MEM_PERM_RW) { perms |= TLB_WRITE_BIT; } if ((flags & SYS_MM_MEM_PERM_EXEC) == SYS_MM_MEM_PERM_EXEC) { perms |= TLB_EXEC_BIT; } return perms; #else return 0; #endif } #if defined(CONFIG_SOC_SERIES_INTEL_ACE1X) /** * Convert TLB entry permission bits to the SYS_MM_MEM_PERM_* flags. * * @param perms TLB entry permission bits * @return Access flags (SYS_MM_MEM_PERM_*) */ static uint16_t tlb_perms_to_flags(uint16_t perms) { uint32_t flags = 0; if ((perms & TLB_WRITE_BIT) == TLB_WRITE_BIT) { flags |= SYS_MM_MEM_PERM_RW; } if ((perms & TLB_EXEC_BIT) == TLB_EXEC_BIT) { flags |= SYS_MM_MEM_PERM_EXEC; } return flags; } #endif static int sys_mm_drv_hpsram_pwr(uint32_t bank_idx, bool enable, bool non_blocking) { #if defined(CONFIG_SOC_SERIES_INTEL_ACE1X) if (bank_idx > mtl_hpsram_get_bank_count()) { return -1; } HPSRAM_REGS(bank_idx)->HSxPGCTL = !enable; if (!non_blocking) { while (HPSRAM_REGS(bank_idx)->HSxPGISTS == enable) { k_busy_wait(1); } } #endif return 0; } int sys_mm_drv_map_page(void *virt, uintptr_t phys, uint32_t flags) { k_spinlock_key_t key; uint32_t entry_idx, bank_idx; uint16_t entry; uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE); int ret = 0; void *phys_block_ptr; /* * Cached addresses for both physical and virtual. * * As the main memory is in cached address ranges, * the cached physical address is needed to perform * bound check. */ uintptr_t pa = POINTER_TO_UINT(z_soc_cached_ptr(UINT_TO_POINTER(phys))); uintptr_t va = POINTER_TO_UINT(z_soc_cached_ptr(virt)); ARG_UNUSED(flags); /* Make sure VA is page-aligned */ CHECKIF(!sys_mm_drv_is_addr_aligned(va)) { ret = -EINVAL; goto out; } /* Check bounds of virtual address space */ CHECKIF((va < CONFIG_KERNEL_VM_BASE) || (va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) { ret = -EINVAL; goto out; } /* * When the provided physical address is NULL * then it is a signal to the Intel ADSP TLB driver to * select the first available free physical address * autonomously within the driver. */ if (UINT_TO_POINTER(phys) == NULL) { ret = sys_mem_blocks_alloc_contiguous(&L2_PHYS_SRAM_REGION, 1, &phys_block_ptr); if (ret != 0) { __ASSERT(false, "unable to assign free phys page %d\n", ret); goto out; } pa = POINTER_TO_UINT(z_soc_cached_ptr(phys_block_ptr)); } /* Check bounds of physical address space */ CHECKIF((pa < L2_SRAM_BASE) || (pa >= (L2_SRAM_BASE + L2_SRAM_SIZE))) { ret = -EINVAL; goto out; } /* Make sure PA is page-aligned */ CHECKIF(!sys_mm_drv_is_addr_aligned(pa)) { ret = -EINVAL; goto out; } key = k_spin_lock(&tlb_lock); entry_idx = get_tlb_entry_idx(va); bank_idx = get_hpsram_bank_idx(pa); if (!hpsram_ref[bank_idx]++) { sys_mm_drv_hpsram_pwr(bank_idx, true, false); } /* * The address part of the TLB entry takes the lowest * TLB_PADDR_SIZE bits of the physical page number, * and discards the highest bits. This is due to the * architecture design where the same physical page * can be accessed via two addresses. One address goes * through the cache, and the other one accesses * memory directly (without cache). The difference * between these two addresses are in the higher bits, * and the lower bits are the same. And this is why * TLB only cares about the lower part of the physical * address. */ entry = pa_to_tlb_entry(pa); /* Enable the translation in the TLB entry */ entry |= TLB_ENABLE_BIT; /* Set permissions for this entry */ entry |= flags_to_tlb_perms(flags); tlb_entries[entry_idx] = entry; /* * Invalid the cache of the newly mapped virtual page to * avoid stale data. */ z_xtensa_cache_inv(virt, CONFIG_MM_DRV_PAGE_SIZE); k_spin_unlock(&tlb_lock, key); out: return ret; } int sys_mm_drv_map_region(void *virt, uintptr_t phys, size_t size, uint32_t flags) { k_spinlock_key_t key; int ret = 0; size_t offset; uintptr_t pa; uint8_t *va; CHECKIF(!sys_mm_drv_is_addr_aligned(phys) || !sys_mm_drv_is_virt_addr_aligned(virt) || !sys_mm_drv_is_size_aligned(size)) { ret = -EINVAL; goto out; } va = (uint8_t *)z_soc_cached_ptr(virt); pa = phys; key = k_spin_lock(&sys_mm_drv_common_lock); for (offset = 0; offset < size; offset += CONFIG_MM_DRV_PAGE_SIZE) { int ret2 = sys_mm_drv_map_page(va, pa, flags); if (ret2 != 0) { __ASSERT(false, "cannot map 0x%lx to %p\n", pa, va); ret = ret2; } va += CONFIG_MM_DRV_PAGE_SIZE; if (phys != 0) { pa += CONFIG_MM_DRV_PAGE_SIZE; } } k_spin_unlock(&sys_mm_drv_common_lock, key); out: return ret; } int sys_mm_drv_map_array(void *virt, uintptr_t *phys, size_t cnt, uint32_t flags) { void *va = z_soc_cached_ptr(virt); return sys_mm_drv_simple_map_array(va, phys, cnt, flags); } int sys_mm_drv_unmap_page(void *virt) { k_spinlock_key_t key; uint32_t entry_idx, bank_idx; uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE); uintptr_t pa; int ret = 0; /* Use cached virtual address */ uintptr_t va = POINTER_TO_UINT(z_soc_cached_ptr(virt)); /* Check bounds of virtual address space */ CHECKIF((va < CONFIG_KERNEL_VM_BASE) || (va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) { ret = -EINVAL; goto out; } /* Make sure inputs are page-aligned */ CHECKIF(!sys_mm_drv_is_addr_aligned(va)) { ret = -EINVAL; goto out; } key = k_spin_lock(&tlb_lock); /* * Flush the cache to make sure the backing physical page * has the latest data. */ z_xtensa_cache_flush(virt, CONFIG_MM_DRV_PAGE_SIZE); entry_idx = get_tlb_entry_idx(va); /* Simply clear the enable bit */ tlb_entries[entry_idx] &= ~TLB_ENABLE_BIT; pa = tlb_entry_to_pa(tlb_entries[entry_idx]); sys_mem_blocks_free_contiguous(&L2_PHYS_SRAM_REGION, UINT_TO_POINTER(pa), 1); bank_idx = get_hpsram_bank_idx(pa); if (--hpsram_ref[bank_idx] == 0) { sys_mm_drv_hpsram_pwr(bank_idx, false, false); } k_spin_unlock(&tlb_lock, key); out: return ret; } int sys_mm_drv_unmap_region(void *virt, size_t size) { void *va = z_soc_cached_ptr(virt); return sys_mm_drv_simple_unmap_region(va, size); } int sys_mm_drv_page_phys_get(void *virt, uintptr_t *phys) { uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE); uintptr_t ent; int ret = 0; /* Use cached address */ uintptr_t va = POINTER_TO_UINT(z_soc_cached_ptr(virt)); CHECKIF(!sys_mm_drv_is_addr_aligned(va)) { ret = -EINVAL; goto out; } /* Check bounds of virtual address space */ CHECKIF((va < CONFIG_KERNEL_VM_BASE) || (va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) { ret = -EINVAL; goto out; } ent = tlb_entries[get_tlb_entry_idx(va)]; if ((ent & TLB_ENABLE_BIT) != TLB_ENABLE_BIT) { ret = -EFAULT; } else { if (phys != NULL) { *phys = (ent & TLB_PADDR_MASK) * CONFIG_MM_DRV_PAGE_SIZE + TLB_PHYS_BASE; } ret = 0; } out: return ret; } int sys_mm_drv_page_flag_get(void *virt, uint32_t *flags) { ARG_UNUSED(virt); int ret = 0; #if defined(CONFIG_SOC_SERIES_INTEL_ACE1X) uint16_t *tlb_entries = UINT_TO_POINTER(TLB_BASE); uint16_t ent; /* Use cached address */ uintptr_t va = POINTER_TO_UINT(z_soc_cached_ptr(virt)); CHECKIF(!sys_mm_drv_is_addr_aligned(va)) { ret = -EINVAL; goto out; } /* Check bounds of virtual address space */ CHECKIF((va < CONFIG_KERNEL_VM_BASE) || (va >= (CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_SIZE))) { ret = -EINVAL; goto out; } ent = tlb_entries[get_tlb_entry_idx(va)]; if ((ent & TLB_ENABLE_BIT) != TLB_ENABLE_BIT) { ret = -EFAULT; } else { *flags = tlb_perms_to_flags(ent); } out: #else /* * There are no caching mode, or R/W, or eXecution (etc.) bits. * So just return 0. */ *flags = 0U; #endif return ret; } int sys_mm_drv_remap_region(void *virt_old, size_t size, void *virt_new) { void *va_new = z_soc_cached_ptr(virt_new); void *va_old = z_soc_cached_ptr(virt_old); return sys_mm_drv_simple_remap_region(va_old, size, va_new); } int sys_mm_drv_move_region(void *virt_old, size_t size, void *virt_new, uintptr_t phys_new) { int ret; void *va_new = z_soc_cached_ptr(virt_new); void *va_old = z_soc_cached_ptr(virt_old); ret = sys_mm_drv_simple_move_region(va_old, size, va_new, phys_new); /* * Since memcpy() is done in virtual space, need to * flush the cache to make sure the backing physical * pages have the new data. */ z_xtensa_cache_flush(va_new, size); return ret; } int sys_mm_drv_move_array(void *virt_old, size_t size, void *virt_new, uintptr_t *phys_new, size_t phys_cnt) { int ret; void *va_new = z_soc_cached_ptr(virt_new); void *va_old = z_soc_cached_ptr(virt_old); ret = sys_mm_drv_simple_move_array(va_old, size, va_new, phys_new, phys_cnt); /* * Since memcpy() is done in virtual space, need to * flush the cache to make sure the backing physical * pages have the new data. */ z_xtensa_cache_flush(va_new, size); return ret; } static int sys_mm_drv_mm_init(const struct device *dev) { int ret; ARG_UNUSED(dev); /* * Initialize memblocks that will store physical * page usage. Initially all physical pages are * mapped in linear way to virtual address space * so mark all pages as allocated. */ ret = sys_mem_blocks_get(&L2_PHYS_SRAM_REGION, (void *) L2_SRAM_BASE, L2_SRAM_PAGES_NUM); CHECKIF(ret != 0) { return ret; } /* * Initialize refcounts for all HPSRAM banks * as fully used because entire HPSRAM is powered on * at system boot. Set reference count to a number * of pages within single memory bank. */ for (int i = 0; i < L2_SRAM_BANK_NUM; i++) { hpsram_ref[i] = SRAM_BANK_SIZE / CONFIG_MM_DRV_PAGE_SIZE; } /* * find virtual address range which are unused * in the system */ uintptr_t unused_l2_start_aligned = ROUND_UP(POINTER_TO_UINT(&unused_l2_sram_start_marker), CONFIG_MM_DRV_PAGE_SIZE); if (unused_l2_start_aligned < L2_SRAM_BASE || unused_l2_start_aligned > L2_SRAM_BASE + L2_SRAM_SIZE) { __ASSERT(false, "unused l2 pointer is outside of l2 sram range %p\n", unused_l2_start_aligned); return -EFAULT; } /* * Unmap unused physical pages from the TLB to save power */ size_t unused_size = L2_SRAM_BASE + L2_SRAM_SIZE - unused_l2_start_aligned; ret = sys_mm_drv_unmap_region(UINT_TO_POINTER(unused_l2_start_aligned), unused_size); return 0; } SYS_INIT(sys_mm_drv_mm_init, POST_KERNEL, 0);