/* * Copyright (c) 2016 Open-RnD Sp. z o.o. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * @brief Driver for UART port on STM32F10x family processor. * * Based on reference manual: * STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx * advanced ARM ® -based 32-bit MCUs * * Chapter 27: Universal synchronous asynchronous receiver * transmitter (USART) */ #include #include #include #include #include #include #include #include #include #include "uart_stm32.h" /* convenience defines */ #define DEV_CFG(dev) \ ((struct uart_stm32_config * const)(dev)->config->config_info) #define DEV_DATA(dev) \ ((struct uart_stm32_data * const)(dev)->driver_data) #define UART_STRUCT(dev) \ ((volatile struct uart_stm32 *)(DEV_CFG(dev))->uconf.base) /** * @brief set baud rate * */ static void set_baud_rate(struct device *dev, uint32_t rate) { volatile struct uart_stm32 *uart = UART_STRUCT(dev); struct uart_stm32_data *data = DEV_DATA(dev); struct uart_stm32_config *cfg = DEV_CFG(dev); uint32_t div, mantissa, fraction; uint32_t clock; /* Baud rate is controlled through BRR register. The values * written into the register depend on the clock driving the * peripheral. Ask clock_control for the current clock rate of * our peripheral. */ clock_control_get_rate(data->clock, cfg->clock_subsys, &clock); /* baud rate calculation: * * baud rate = f_clk / (16 * usartdiv) * * Example (STM32F10x, USART1, PCLK2 @ 36MHz, 9600bps): * * f_clk == PCLK2, * usartdiv = 234.375, * mantissa = 234, * fracion = 6 (0.375 * 16) */ div = clock / rate; mantissa = div >> 4; fraction = div & 0xf; uart->brr.bit.mantissa = mantissa; uart->brr.bit.fraction = fraction; } static int uart_stm32_poll_in(struct device *dev, unsigned char *c) { volatile struct uart_stm32 *uart = UART_STRUCT(dev); /* check if RXNE is set */ if (!uart->sr.bit.rxne) { return -1; } /* read character */ *c = (unsigned char)uart->dr.bit.dr; return 0; } static unsigned char uart_stm32_poll_out(struct device *dev, unsigned char c) { volatile struct uart_stm32 *uart = UART_STRUCT(dev); /* wait for TXE to be set */ while (!uart->sr.bit.txe) { } uart->dr.bit.dr = c; return c; } static inline void __uart_stm32_get_clock(struct device *dev) { struct uart_stm32_data *ddata = dev->driver_data; struct device *clk = device_get_binding(STM32_CLOCK_CONTROL_NAME); __ASSERT_NO_MSG(clk); ddata->clock = clk; } static struct uart_driver_api uart_stm32_driver_api = { .poll_in = uart_stm32_poll_in, .poll_out = uart_stm32_poll_out, }; /** * @brief Initialize UART channel * * This routine is called to reset the chip in a quiescent state. * It is assumed that this function is called only once per UART. * * @param dev UART device struct * * @return 0 */ static int uart_stm32_init(struct device *dev) { volatile struct uart_stm32 *uart = UART_STRUCT(dev); struct uart_stm32_data *data = DEV_DATA(dev); struct uart_stm32_config *cfg = DEV_CFG(dev); __uart_stm32_get_clock(dev); /* enable clock */ clock_control_on(data->clock, cfg->clock_subsys); /* FIXME: hardcoded, clear stop bits */ uart->cr2.bit.stop = 0; uart->cr1.val = 0; /* FIXME: hardcoded, 8n1 */ uart->cr1.bit.m = 0; uart->cr1.bit.pce = 0; /* FIXME: hardcoded, disable hardware flow control */ uart->cr3.bit.ctse = 0; uart->cr3.bit.rtse = 0; set_baud_rate(dev, data->baud_rate); /* enable TX/RX */ uart->cr1.bit.te = 1; uart->cr1.bit.re = 1; /* enable */ uart->cr1.bit.ue = 1; dev->driver_api = &uart_stm32_driver_api; return 0; } #ifdef CONFIG_UART_STM32_PORT_0 static struct uart_stm32_config uart_stm32_dev_cfg_0 = { .uconf = { .base = (uint8_t *)USART1_ADDR, }, #ifdef CONFIG_SOC_STM32F1X .clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART1), #endif /* CONFIG_SOC_STM32F1X */ }; static struct uart_stm32_data uart_stm32_dev_data_0 = { .baud_rate = CONFIG_UART_STM32_PORT_0_BAUD_RATE, }; DEVICE_INIT(uart_stm32_0, CONFIG_UART_STM32_PORT_0_NAME, &uart_stm32_init, &uart_stm32_dev_data_0, &uart_stm32_dev_cfg_0, PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE); #endif /* CONFIG_UART_STM32_PORT_0 */ #ifdef CONFIG_UART_STM32_PORT_1 static struct uart_stm32_config uart_stm32_dev_cfg_1 = { .uconf = { .base = (uint8_t *)USART2_ADDR, }, #ifdef CONFIG_SOC_STM32F1X .clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART2), #endif /* CONFIG_SOC_STM32F1X */ }; static struct uart_stm32_data uart_stm32_dev_data_1 = { .baud_rate = CONFIG_UART_STM32_PORT_1_BAUD_RATE, }; DEVICE_INIT(uart_stm32_1, CONFIG_UART_STM32_PORT_1_NAME, &uart_stm32_init, &uart_stm32_dev_data_1, &uart_stm32_dev_cfg_1, PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE); #endif /* CONFIG_UART_STM32_PORT_1 */ #ifdef CONFIG_UART_STM32_PORT_2 static struct uart_stm32_config uart_stm32_dev_cfg_2 = { .uconf = { .base = (uint8_t *)USART3_ADDR, }, #ifdef CONFIG_SOC_STM32F1X .clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART3), #endif /* CONFIG_SOC_STM32F1X */ }; static struct uart_stm32_data uart_stm32_dev_data_2 = { .baud_rate = CONFIG_UART_STM32_PORT_2_BAUD_RATE, }; DEVICE_INIT(uart_stm32_2, CONFIG_UART_STM32_PORT_2_NAME, &uart_stm32_init, &uart_stm32_dev_data_2, &uart_stm32_dev_cfg_2, PRIMARY, CONFIG_KERNEL_INIT_PRIORITY_DEVICE); #endif /* CONFIG_UART_STM32_PORT_2 */