/* * Copyright (c) 2016 Jean-Paul Etienne * * SPDX-License-Identifier: Apache-2.0 */ #include #include void z_thread_entry_wrapper(k_thread_entry_t thread, void *arg1, void *arg2, void *arg3); void arch_new_thread(struct k_thread *thread, k_thread_stack_t *stack, char *stack_ptr, k_thread_entry_t entry, void *p1, void *p2, void *p3) { struct __esf *stack_init; #ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE const struct soc_esf soc_esf_init = {SOC_ESF_INIT}; #endif /* Initial stack frame for thread */ stack_init = Z_STACK_PTR_TO_FRAME(struct __esf, stack_ptr); /* Setup the initial stack frame */ stack_init->a0 = (ulong_t)entry; stack_init->a1 = (ulong_t)p1; stack_init->a2 = (ulong_t)p2; stack_init->a3 = (ulong_t)p3; /* * Following the RISC-V architecture, * the MSTATUS register (used to globally enable/disable interrupt), * as well as the MEPC register (used to by the core to save the * value of the program counter at which an interrupt/exception occcurs) * need to be saved on the stack, upon an interrupt/exception * and restored prior to returning from the interrupt/exception. * This shall allow to handle nested interrupts. * * Given that context switching is performed via a system call exception * within the RISCV architecture implementation, initially set: * 1) MSTATUS to MSTATUS_DEF_RESTORE in the thread stack to enable * interrupts when the newly created thread will be scheduled; * 2) MEPC to the address of the z_thread_entry_wrapper in the thread * stack. * Hence, when going out of an interrupt/exception/context-switch, * after scheduling the newly created thread: * 1) interrupts will be enabled, as the MSTATUS register will be * restored following the MSTATUS value set within the thread stack; * 2) the core will jump to z_thread_entry_wrapper, as the program * counter will be restored following the MEPC value set within the * thread stack. */ stack_init->mstatus = MSTATUS_DEF_RESTORE; #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) if ((thread->base.user_options & K_FP_REGS) != 0) { stack_init->mstatus |= MSTATUS_FS_INIT; } stack_init->fp_state = 0; #endif stack_init->mepc = (ulong_t)z_thread_entry_wrapper; #ifdef CONFIG_RISCV_SOC_CONTEXT_SAVE stack_init->soc_context = soc_esf_init; #endif thread->callee_saved.sp = (ulong_t)stack_init; } #if defined(CONFIG_FPU) && defined(CONFIG_FPU_SHARING) int arch_float_disable(struct k_thread *thread) { unsigned int key; if (thread != _current) { return -EINVAL; } if (arch_is_in_isr()) { return -EINVAL; } /* Ensure a preemptive context switch does not occur */ key = irq_lock(); /* Disable all floating point capabilities for the thread */ thread->base.user_options &= ~K_FP_REGS; /* Clear the FS bits to disable the FPU. */ __asm__ volatile ( "mv t0, %0\n" "csrrc x0, mstatus, t0\n" : : "r" (MSTATUS_FS_MASK) ); irq_unlock(key); return 0; } int arch_float_enable(struct k_thread *thread) { unsigned int key; if (thread != _current) { return -EINVAL; } if (arch_is_in_isr()) { return -EINVAL; } /* Ensure a preemptive context switch does not occur */ key = irq_lock(); /* Enable all floating point capabilities for the thread. */ thread->base.user_options |= K_FP_REGS; /* Set the FS bits to Initial to enable the FPU. */ __asm__ volatile ( "mv t0, %0\n" "csrrs x0, mstatus, t0\n" : : "r" (MSTATUS_FS_INIT) ); irq_unlock(key); return 0; } #endif /* CONFIG_FPU && CONFIG_FPU_SHARING */