/* * Copyright (c) 2019 Vestas Wind Systems A/S * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nxp_kinetis_flexcan #include #include #include #include #include #include #include #define LOG_LEVEL CONFIG_CAN_LOG_LEVEL #include LOG_MODULE_REGISTER(can_mcux_flexcan); #define SP_IS_SET(inst) DT_INST_NODE_HAS_PROP(inst, sample_point) || /* Macro to exclude the sample point algorithm from compilation if not used * Without the macro, the algorithm would always waste ROM */ #define USE_SP_ALGO (DT_INST_FOREACH_STATUS_OKAY(SP_IS_SET) 0) #define SP_AND_TIMING_NOT_SET(inst) \ (!DT_INST_NODE_HAS_PROP(inst, sample_point) && \ !(DT_INST_NODE_HAS_PROP(inst, prop_seg) && \ DT_INST_NODE_HAS_PROP(inst, phase_seg1) && \ DT_INST_NODE_HAS_PROP(inst, phase_seg2))) || #if DT_INST_FOREACH_STATUS_OKAY(SP_AND_TIMING_NOT_SET) 0 #error You must either set a sampling-point or timings (phase-seg* and prop-seg) #endif #if ((defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5641) || \ (defined(FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829) && FSL_FEATURE_FLEXCAN_HAS_ERRATA_5829)) /* the first valid MB should be occupied by ERRATA 5461 or 5829. */ #define RX_START_IDX 1 #else #define RX_START_IDX 0 #endif /* * RX message buffers (filters) will take up the first N message * buffers. The rest are available for TX use. */ #define MCUX_FLEXCAN_MAX_RX CONFIG_CAN_MAX_FILTER #define MCUX_FLEXCAN_MAX_TX \ (FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(0) \ - MCUX_FLEXCAN_MAX_RX) #define MCUX_N_TX_ALLOC_ELEM (1 + (MCUX_FLEXCAN_MAX_TX - 1) / ATOMIC_BITS) /* * Convert from RX message buffer index to allocated filter ID and * vice versa. */ #define RX_MBIDX_TO_ALLOC_IDX(x) (x) #define ALLOC_IDX_TO_RXMB_IDX(x) (x) /* * Convert from TX message buffer index to allocated TX ID and vice * versa. */ #define TX_MBIDX_TO_ALLOC_IDX(x) (x - MCUX_FLEXCAN_MAX_RX) #define ALLOC_IDX_TO_TXMB_IDX(x) (x + MCUX_FLEXCAN_MAX_RX) /* Convert from back from FLEXCAN IDs to Zephyr CAN IDs. */ #define FLEXCAN_ID_TO_ZCAN_ID_STD(id) \ ((uint32_t)((((uint32_t)(id)) & CAN_ID_STD_MASK) >> CAN_ID_STD_SHIFT)) #define FLEXCAN_ID_TO_ZCAN_ID_EXT(id) \ ((uint32_t)((((uint32_t)(id)) & (CAN_ID_STD_MASK | CAN_ID_EXT_MASK)) \ >> CAN_ID_EXT_SHIFT)) struct mcux_flexcan_config { CAN_Type *base; const struct device *clock_dev; clock_control_subsys_t clock_subsys; int clk_source; uint32_t bitrate; uint32_t sample_point; uint32_t sjw; uint32_t prop_seg; uint32_t phase_seg1; uint32_t phase_seg2; void (*irq_config_func)(const struct device *dev); }; struct mcux_flexcan_rx_callback { flexcan_rx_mb_config_t mb_config; flexcan_frame_t frame; can_rx_callback_t function; void *arg; }; struct mcux_flexcan_tx_callback { struct k_sem done; int status; flexcan_frame_t frame; can_tx_callback_t function; void *arg; }; struct mcux_flexcan_data { const struct device *dev; flexcan_handle_t handle; ATOMIC_DEFINE(rx_allocs, MCUX_FLEXCAN_MAX_RX); struct k_mutex rx_mutex; struct mcux_flexcan_rx_callback rx_cbs[MCUX_FLEXCAN_MAX_RX]; ATOMIC_DEFINE(tx_allocs, MCUX_FLEXCAN_MAX_TX); struct k_sem tx_allocs_sem; struct mcux_flexcan_tx_callback tx_cbs[MCUX_FLEXCAN_MAX_TX]; enum can_state state; can_state_change_isr_t state_change_isr; struct can_timing timing; }; static int mcux_flexcan_get_core_clock(const struct device *dev, uint32_t *rate) { const struct mcux_flexcan_config *config = dev->config; return clock_control_get_rate(config->clock_dev, config->clock_subsys, rate); } int mcux_flexcan_get_max_filters(const struct device *dev, enum can_ide id_type) { ARG_UNUSED(id_type); return CONFIG_CAN_MAX_FILTER; } static int mcux_flexcan_set_timing(const struct device *dev, const struct can_timing *timing, const struct can_timing *timing_data) { ARG_UNUSED(timing_data); struct mcux_flexcan_data *data = dev->data; const struct mcux_flexcan_config *config = dev->config; uint8_t sjw_backup = data->timing.sjw; flexcan_timing_config_t timing_tmp; if (!timing) { return -EINVAL; } data->timing = *timing; if (timing->sjw == CAN_SJW_NO_CHANGE) { data->timing.sjw = sjw_backup; } timing_tmp.preDivider = data->timing.prescaler - 1U; timing_tmp.rJumpwidth = data->timing.sjw - 1U; timing_tmp.phaseSeg1 = data->timing.phase_seg1 - 1U; timing_tmp.phaseSeg2 = data->timing.phase_seg2 - 1U; timing_tmp.propSeg = data->timing.prop_seg - 1U; FLEXCAN_SetTimingConfig(config->base, &timing_tmp); return 0; } static int mcux_flexcan_set_mode(const struct device *dev, enum can_mode mode) { struct mcux_flexcan_data *data = dev->data; const struct mcux_flexcan_config *config = dev->config; flexcan_config_t flexcan_config; uint32_t clock_freq; int ret; ret = mcux_flexcan_get_core_clock(dev, &clock_freq); if (ret != 0) { return -EIO; } FLEXCAN_GetDefaultConfig(&flexcan_config); flexcan_config.maxMbNum = FSL_FEATURE_FLEXCAN_HAS_MESSAGE_BUFFER_MAX_NUMBERn(0); flexcan_config.clkSrc = config->clk_source; flexcan_config.baudRate = clock_freq / (1U + data->timing.prop_seg + data->timing.phase_seg1 + data->timing.phase_seg2) / data->timing.prescaler; flexcan_config.enableIndividMask = true; flexcan_config.timingConfig.rJumpwidth = data->timing.sjw - 1U; flexcan_config.timingConfig.propSeg = data->timing.prop_seg - 1U; flexcan_config.timingConfig.phaseSeg1 = data->timing.phase_seg1 - 1U; flexcan_config.timingConfig.phaseSeg2 = data->timing.phase_seg2 - 1U; if (mode == CAN_LOOPBACK_MODE || mode == CAN_SILENT_LOOPBACK_MODE) { flexcan_config.enableLoopBack = true; } else { /* Disable self-reception unless loopback is requested */ flexcan_config.disableSelfReception = true; } if (mode == CAN_SILENT_MODE || mode == CAN_SILENT_LOOPBACK_MODE) { flexcan_config.enableListenOnlyMode = true; } FLEXCAN_Init(config->base, &flexcan_config, clock_freq); return 0; } static void mcux_flexcan_copy_zframe_to_frame(const struct zcan_frame *src, flexcan_frame_t *dest) { if (src->id_type == CAN_STANDARD_IDENTIFIER) { dest->format = kFLEXCAN_FrameFormatStandard; dest->id = FLEXCAN_ID_STD(src->id); } else { dest->format = kFLEXCAN_FrameFormatExtend; dest->id = FLEXCAN_ID_EXT(src->id); } if (src->rtr == CAN_DATAFRAME) { dest->type = kFLEXCAN_FrameTypeData; } else { dest->type = kFLEXCAN_FrameTypeRemote; } dest->length = src->dlc; dest->dataWord0 = sys_cpu_to_be32(src->data_32[0]); dest->dataWord1 = sys_cpu_to_be32(src->data_32[1]); } static void mcux_flexcan_copy_frame_to_zframe(const flexcan_frame_t *src, struct zcan_frame *dest) { if (src->format == kFLEXCAN_FrameFormatStandard) { dest->id_type = CAN_STANDARD_IDENTIFIER; dest->id = FLEXCAN_ID_TO_ZCAN_ID_STD(src->id); } else { dest->id_type = CAN_EXTENDED_IDENTIFIER; dest->id = FLEXCAN_ID_TO_ZCAN_ID_EXT(src->id); } if (src->type == kFLEXCAN_FrameTypeData) { dest->rtr = CAN_DATAFRAME; } else { dest->rtr = CAN_REMOTEREQUEST; } dest->dlc = src->length; dest->data_32[0] = sys_be32_to_cpu(src->dataWord0); dest->data_32[1] = sys_be32_to_cpu(src->dataWord1); #ifdef CONFIG_CAN_RX_TIMESTAMP dest->timestamp = src->timestamp; #endif /* CAN_RX_TIMESTAMP */ } static void mcux_flexcan_copy_zfilter_to_mbconfig(const struct zcan_filter *src, flexcan_rx_mb_config_t *dest, uint32_t *mask) { if (src->id_type == CAN_STANDARD_IDENTIFIER) { dest->format = kFLEXCAN_FrameFormatStandard; dest->id = FLEXCAN_ID_STD(src->id); *mask = FLEXCAN_RX_MB_STD_MASK(src->id_mask, src->rtr & src->rtr_mask, 1); } else { dest->format = kFLEXCAN_FrameFormatExtend; dest->id = FLEXCAN_ID_EXT(src->id); *mask = FLEXCAN_RX_MB_EXT_MASK(src->id_mask, src->rtr & src->rtr_mask, 1); } if ((src->rtr & src->rtr_mask) == CAN_DATAFRAME) { dest->type = kFLEXCAN_FrameTypeData; } else { dest->type = kFLEXCAN_FrameTypeRemote; } } /* mcux_get_tx_alloc is a linear on array, and binary on atomic_val_t search * for the highest bit set in data->tx_allocs. 0 is returned in case of an empty * tx_alloc, the next free bit otherwise. * The reason to always use a higher buffer number than the current in use is * that a FIFO manner is kept. The Controller would otherwise send the frame * that is in the lowest buffer number first. */ static int mcux_get_tx_alloc(struct mcux_flexcan_data *data) { atomic_val_t *allocs = data->tx_allocs; atomic_val_t pivot = ATOMIC_BITS / 2; atomic_val_t alloc, mask; int i; for (i = MCUX_N_TX_ALLOC_ELEM - 1; i >= 0; i--) { alloc = allocs[i]; if (alloc) { for (atomic_val_t bits = ATOMIC_BITS / 2U; bits; bits >>= 1) { mask = GENMASK(pivot + bits - 1, pivot); if (alloc & mask) { pivot += bits / 2U; } else { pivot -= bits / 2U; } } if (!(alloc & mask)) { pivot--; } break; } } alloc = alloc ? (pivot + 1 + i * ATOMIC_BITS) : 0; return alloc >= MCUX_FLEXCAN_MAX_TX ? -1 : alloc; } static int mcux_flexcan_send(const struct device *dev, const struct zcan_frame *frame, k_timeout_t timeout, can_tx_callback_t callback, void *user_data) { const struct mcux_flexcan_config *config = dev->config; struct mcux_flexcan_data *data = dev->data; flexcan_mb_transfer_t xfer; status_t status; int alloc; if (frame->dlc > CAN_MAX_DLC) { LOG_ERR("DLC of %d exceeds maximum (%d)", frame->dlc, CAN_MAX_DLC); return CAN_TX_EINVAL; } while (true) { alloc = mcux_get_tx_alloc(data); if (alloc >= 0) { if (atomic_test_and_set_bit(data->tx_allocs, alloc)) { continue; } break; } if (k_sem_take(&data->tx_allocs_sem, timeout) != 0) { return CAN_TIMEOUT; } } mcux_flexcan_copy_zframe_to_frame(frame, &data->tx_cbs[alloc].frame); data->tx_cbs[alloc].function = callback; data->tx_cbs[alloc].arg = user_data; xfer.frame = &data->tx_cbs[alloc].frame; xfer.mbIdx = ALLOC_IDX_TO_TXMB_IDX(alloc); FLEXCAN_SetTxMbConfig(config->base, xfer.mbIdx, true); status = FLEXCAN_TransferSendNonBlocking(config->base, &data->handle, &xfer); if (status != kStatus_Success) { return CAN_TX_ERR; } if (callback == NULL) { k_sem_take(&data->tx_cbs[alloc].done, K_FOREVER); return data->tx_cbs[alloc].status; } return CAN_TX_OK; } static int mcux_flexcan_attach_isr(const struct device *dev, can_rx_callback_t isr, void *user_data, const struct zcan_filter *filter) { const struct mcux_flexcan_config *config = dev->config; struct mcux_flexcan_data *data = dev->data; flexcan_mb_transfer_t xfer; status_t status; uint32_t mask; int alloc = CAN_NO_FREE_FILTER; int i; __ASSERT_NO_MSG(isr); k_mutex_lock(&data->rx_mutex, K_FOREVER); /* Find and allocate RX message buffer */ for (i = RX_START_IDX; i < MCUX_FLEXCAN_MAX_RX; i++) { if (!atomic_test_and_set_bit(data->rx_allocs, i)) { alloc = i; break; } } if (alloc == CAN_NO_FREE_FILTER) { return alloc; } mcux_flexcan_copy_zfilter_to_mbconfig(filter, &data->rx_cbs[alloc].mb_config, &mask); data->rx_cbs[alloc].arg = user_data; data->rx_cbs[alloc].function = isr; FLEXCAN_SetRxIndividualMask(config->base, ALLOC_IDX_TO_RXMB_IDX(alloc), mask); FLEXCAN_SetRxMbConfig(config->base, ALLOC_IDX_TO_RXMB_IDX(alloc), &data->rx_cbs[alloc].mb_config, true); xfer.frame = &data->rx_cbs[alloc].frame; xfer.mbIdx = ALLOC_IDX_TO_RXMB_IDX(alloc); status = FLEXCAN_TransferReceiveNonBlocking(config->base, &data->handle, &xfer); if (status != kStatus_Success) { LOG_ERR("Failed to start rx for filter id %d (err = %d)", alloc, status); alloc = CAN_NO_FREE_FILTER; } k_mutex_unlock(&data->rx_mutex); return alloc; } static void mcux_flexcan_register_state_change_isr(const struct device *dev, can_state_change_isr_t isr) { struct mcux_flexcan_data *data = dev->data; data->state_change_isr = isr; } static enum can_state mcux_flexcan_get_state(const struct device *dev, struct can_bus_err_cnt *err_cnt) { const struct mcux_flexcan_config *config = dev->config; uint32_t status_flags; if (err_cnt) { FLEXCAN_GetBusErrCount(config->base, &err_cnt->tx_err_cnt, &err_cnt->rx_err_cnt); } status_flags = (FLEXCAN_GetStatusFlags(config->base) & CAN_ESR1_FLTCONF_MASK) << CAN_ESR1_FLTCONF_SHIFT; if (status_flags & 0x02) { return CAN_BUS_OFF; } if (status_flags & 0x01) { return CAN_ERROR_PASSIVE; } return CAN_ERROR_ACTIVE; } #ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY int mcux_flexcan_recover(const struct device *dev, k_timeout_t timeout) { const struct mcux_flexcan_config *config = dev->config; int ret = 0; uint64_t start_time; if (mcux_flexcan_get_state(dev, NULL) != CAN_BUS_OFF) { return 0; } start_time = k_uptime_ticks(); config->base->CTRL1 &= ~CAN_CTRL1_BOFFREC_MASK; if (!K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { while (mcux_flexcan_get_state(dev, NULL) == CAN_BUS_OFF) { if (!K_TIMEOUT_EQ(timeout, K_FOREVER) && k_uptime_ticks() - start_time >= timeout.ticks) { ret = CAN_TIMEOUT; } } } config->base->CTRL1 |= CAN_CTRL1_BOFFREC_MASK; return ret; } #endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */ static void mcux_flexcan_detach(const struct device *dev, int filter_id) { const struct mcux_flexcan_config *config = dev->config; struct mcux_flexcan_data *data = dev->data; if (filter_id >= MCUX_FLEXCAN_MAX_RX) { LOG_ERR("Detach: Filter id >= MAX_RX (%d >= %d)", filter_id, MCUX_FLEXCAN_MAX_RX); return; } k_mutex_lock(&data->rx_mutex, K_FOREVER); if (atomic_test_and_clear_bit(data->rx_allocs, filter_id)) { FLEXCAN_TransferAbortReceive(config->base, &data->handle, ALLOC_IDX_TO_RXMB_IDX(filter_id)); FLEXCAN_SetRxMbConfig(config->base, ALLOC_IDX_TO_RXMB_IDX(filter_id), NULL, false); data->rx_cbs[filter_id].function = NULL; data->rx_cbs[filter_id].arg = NULL; } else { LOG_WRN("Filter ID %d already detached", filter_id); } k_mutex_unlock(&data->rx_mutex); } static inline void mcux_flexcan_transfer_error_status(const struct device *dev, uint64_t error) { const struct mcux_flexcan_config *config = dev->config; struct mcux_flexcan_data *data = dev->data; can_tx_callback_t function; int status = CAN_TX_OK; void *arg; int alloc; enum can_state state; struct can_bus_err_cnt err_cnt; if (error & CAN_ESR1_FLTCONF(2)) { LOG_DBG("Tx bus off (error 0x%08llx)", error); status = CAN_TX_BUS_OFF; } else if ((error & kFLEXCAN_Bit0Error) || (error & kFLEXCAN_Bit1Error)) { LOG_DBG("TX arbitration lost (error 0x%08llx)", error); status = CAN_TX_ARB_LOST; } else if (error & kFLEXCAN_AckError) { LOG_DBG("TX no ACK received (error 0x%08llx)", error); status = CAN_TX_ERR; } else if (error & kFLEXCAN_StuffingError) { LOG_DBG("RX stuffing error (error 0x%08llx)", error); } else if (error & kFLEXCAN_FormError) { LOG_DBG("RX form error (error 0x%08llx)", error); } else if (error & kFLEXCAN_CrcError) { LOG_DBG("RX CRC error (error 0x%08llx)", error); } else { LOG_DBG("Unhandled error (error 0x%08llx)", error); } state = mcux_flexcan_get_state(dev, &err_cnt); if (data->state != state) { data->state = state; if (data->state_change_isr) { data->state_change_isr(state, err_cnt); } } if (status == CAN_TX_OK) { /* * Error/status is not TX related. No further action * required. */ return; } /* * Since the FlexCAN module ESR1 register accumulates errors * and warnings across multiple transmitted frames (until the * CPU reads the register) it is not possible to find out * which transfer caused the error/warning. * * We therefore propagate the error/warning to all currently * active transmitters. */ for (alloc = 0; alloc < MCUX_FLEXCAN_MAX_TX; alloc++) { /* Copy callback function and argument before clearing bit */ function = data->tx_cbs[alloc].function; arg = data->tx_cbs[alloc].arg; if (atomic_test_and_clear_bit(data->tx_allocs, alloc)) { FLEXCAN_TransferAbortSend(config->base, &data->handle, ALLOC_IDX_TO_TXMB_IDX(alloc)); if (function != NULL) { function(status, arg); } else { data->tx_cbs[alloc].status = status; k_sem_give(&data->tx_cbs[alloc].done); } k_sem_give(&data->tx_allocs_sem); } } } static inline void mcux_flexcan_transfer_tx_idle(const struct device *dev, uint32_t mb) { struct mcux_flexcan_data *data = dev->data; can_tx_callback_t function; void *arg; int alloc; alloc = TX_MBIDX_TO_ALLOC_IDX(mb); /* Copy callback function and argument before clearing bit */ function = data->tx_cbs[alloc].function; arg = data->tx_cbs[alloc].arg; if (atomic_test_and_clear_bit(data->tx_allocs, alloc)) { if (function != NULL) { function(CAN_TX_OK, arg); } else { data->tx_cbs[alloc].status = CAN_TX_OK; k_sem_give(&data->tx_cbs[alloc].done); } k_sem_give(&data->tx_allocs_sem); } } static inline void mcux_flexcan_transfer_rx_idle(const struct device *dev, uint32_t mb) { const struct mcux_flexcan_config *config = dev->config; struct mcux_flexcan_data *data = dev->data; can_rx_callback_t function; flexcan_mb_transfer_t xfer; struct zcan_frame frame; status_t status; void *arg; int alloc; alloc = RX_MBIDX_TO_ALLOC_IDX(mb); function = data->rx_cbs[alloc].function; arg = data->rx_cbs[alloc].arg; if (atomic_test_bit(data->rx_allocs, alloc)) { mcux_flexcan_copy_frame_to_zframe(&data->rx_cbs[alloc].frame, &frame); function(&frame, arg); /* Setup RX message buffer to receive next message */ FLEXCAN_SetRxMbConfig(config->base, mb, &data->rx_cbs[alloc].mb_config, true); xfer.frame = &data->rx_cbs[alloc].frame; xfer.mbIdx = mb; status = FLEXCAN_TransferReceiveNonBlocking(config->base, &data->handle, &xfer); if (status != kStatus_Success) { LOG_ERR("Failed to restart rx for filter id %d " "(err = %d)", alloc, status); } } } static FLEXCAN_CALLBACK(mcux_flexcan_transfer_callback) { struct mcux_flexcan_data *data = (struct mcux_flexcan_data *)userData; switch (status) { case kStatus_FLEXCAN_UnHandled: __fallthrough; case kStatus_FLEXCAN_ErrorStatus: mcux_flexcan_transfer_error_status(data->dev, (uint64_t)result); break; case kStatus_FLEXCAN_TxSwitchToRx: __fallthrough; case kStatus_FLEXCAN_TxIdle: /* The result field is a MB value which is limited to 32bit value */ mcux_flexcan_transfer_tx_idle(data->dev, (uint32_t)result); break; case kStatus_FLEXCAN_RxOverflow: __fallthrough; case kStatus_FLEXCAN_RxIdle: /* The result field is a MB value which is limited to 32bit value */ mcux_flexcan_transfer_rx_idle(data->dev, (uint32_t)result); break; default: LOG_WRN("Unhandled error/status (status 0x%08x, " "result = 0x%08llx", status, (uint64_t)result); } } static void mcux_flexcan_isr(const struct device *dev) { const struct mcux_flexcan_config *config = dev->config; struct mcux_flexcan_data *data = dev->data; FLEXCAN_TransferHandleIRQ(config->base, &data->handle); } static int mcux_flexcan_init(const struct device *dev) { const struct mcux_flexcan_config *config = dev->config; struct mcux_flexcan_data *data = dev->data; int err; int i; k_mutex_init(&data->rx_mutex); k_sem_init(&data->tx_allocs_sem, 0, 1); for (i = 0; i < ARRAY_SIZE(data->tx_cbs); i++) { k_sem_init(&data->tx_cbs[i].done, 0, 1); } data->timing.sjw = config->sjw; if (config->sample_point && USE_SP_ALGO) { err = can_calc_timing(dev, &data->timing, config->bitrate, config->sample_point); if (err == -EINVAL) { LOG_ERR("Can't find timing for given param"); return -EIO; } LOG_DBG("Presc: %d, Seg1S1: %d, Seg2: %d", data->timing.prescaler, data->timing.phase_seg1, data->timing.phase_seg2); LOG_DBG("Sample-point err : %d", err); } else { data->timing.prop_seg = config->prop_seg; data->timing.phase_seg1 = config->phase_seg1; data->timing.phase_seg2 = config->phase_seg2; err = can_calc_prescaler(dev, &data->timing, config->bitrate); if (err) { LOG_WRN("Bitrate error: %d", err); } } err = mcux_flexcan_set_mode(dev, CAN_NORMAL_MODE); if (err) { return err; } data->dev = dev; FLEXCAN_TransferCreateHandle(config->base, &data->handle, mcux_flexcan_transfer_callback, data); config->irq_config_func(dev); #ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY config->base->CTRL1 |= CAN_CTRL1_BOFFREC_MASK; #endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */ data->state = mcux_flexcan_get_state(dev, NULL); return 0; } static const struct can_driver_api mcux_flexcan_driver_api = { .set_mode = mcux_flexcan_set_mode, .set_timing = mcux_flexcan_set_timing, .send = mcux_flexcan_send, .attach_isr = mcux_flexcan_attach_isr, .detach = mcux_flexcan_detach, .get_state = mcux_flexcan_get_state, #ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY .recover = mcux_flexcan_recover, #endif .register_state_change_isr = mcux_flexcan_register_state_change_isr, .get_core_clock = mcux_flexcan_get_core_clock, .get_max_filters = mcux_flexcan_get_max_filters, /* * FlexCAN timing limits are specified in the "FLEXCANx_CTRL1 field * descriptions" table in the SoC reference manual. * * Note that the values here are the "physical" timing limits, whereas * the register field limits are physical values minus 1 (which is * handled by the flexcan_config_t field assignments elsewhere in this * driver). */ .timing_min = { .sjw = 0x01, .prop_seg = 0x01, .phase_seg1 = 0x01, .phase_seg2 = 0x02, .prescaler = 0x01 }, .timing_max = { .sjw = 0x04, .prop_seg = 0x08, .phase_seg1 = 0x08, .phase_seg2 = 0x08, .prescaler = 0x100 } }; #define FLEXCAN_IRQ_CODE(id, name) \ do { \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(id, name, irq), \ DT_INST_IRQ_BY_NAME(id, name, priority), \ mcux_flexcan_isr, \ DEVICE_DT_INST_GET(id), 0); \ irq_enable(DT_INST_IRQ_BY_NAME(id, name, irq)); \ } while (0) #define FLEXCAN_IRQ(id, name) \ COND_CODE_1(DT_INST_IRQ_HAS_NAME(id, name), \ (FLEXCAN_IRQ_CODE(id, name)), ()) #define FLEXCAN_DEVICE_INIT_MCUX(id) \ static void mcux_flexcan_irq_config_##id(const struct device *dev); \ \ static const struct mcux_flexcan_config mcux_flexcan_config_##id = { \ .base = (CAN_Type *)DT_INST_REG_ADDR(id), \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(id)), \ .clock_subsys = (clock_control_subsys_t) \ DT_INST_CLOCKS_CELL(id, name), \ .clk_source = DT_INST_PROP(id, clk_source), \ .bitrate = DT_INST_PROP(id, bus_speed), \ .sjw = DT_INST_PROP(id, sjw), \ .prop_seg = DT_INST_PROP_OR(id, prop_seg, 0), \ .phase_seg1 = DT_INST_PROP_OR(id, phase_seg1, 0), \ .phase_seg2 = DT_INST_PROP_OR(id, phase_seg2, 0), \ .sample_point = DT_INST_PROP_OR(id, sample_point, 0), \ .irq_config_func = mcux_flexcan_irq_config_##id, \ }; \ \ static struct mcux_flexcan_data mcux_flexcan_data_##id; \ \ DEVICE_DT_INST_DEFINE(id, &mcux_flexcan_init, \ NULL, &mcux_flexcan_data_##id, \ &mcux_flexcan_config_##id, POST_KERNEL, \ CONFIG_CAN_INIT_PRIORITY, \ &mcux_flexcan_driver_api); \ \ static void mcux_flexcan_irq_config_##id(const struct device *dev) \ { \ FLEXCAN_IRQ(id, rx_warning); \ FLEXCAN_IRQ(id, tx_warning); \ FLEXCAN_IRQ(id, bus_off); \ FLEXCAN_IRQ(id, warning); \ FLEXCAN_IRQ(id, error); \ FLEXCAN_IRQ(id, wake_up); \ FLEXCAN_IRQ(id, mb_0_15); \ FLEXCAN_IRQ(id, common); \ } DT_INST_FOREACH_STATUS_OKAY(FLEXCAN_DEVICE_INIT_MCUX) #if defined(CONFIG_NET_SOCKETS_CAN) #include "socket_can_generic.h" #define FLEXCAN_DEVICE_SOCKET_CAN(id) \ static struct socket_can_context socket_can_context_##id; \ static int socket_can_init_##id(const struct device *dev) \ { \ const struct device *can_dev = DEVICE_DT_INST_GET(id); \ struct socket_can_context *socket_context = dev->data; \ LOG_DBG("Init socket CAN device %p (%s) for dev %p (%s)", \ dev, dev->name, can_dev, can_dev->name); \ socket_context->can_dev = can_dev; \ socket_context->msgq = &socket_can_msgq; \ socket_context->rx_tid = \ k_thread_create(&socket_context->rx_thread_data, \ rx_thread_stack, \ K_KERNEL_STACK_SIZEOF(rx_thread_stack), \ rx_thread, socket_context, NULL, NULL, \ RX_THREAD_PRIORITY, 0, K_NO_WAIT); \ return 0; \ } \ \ NET_DEVICE_INIT(socket_can_flexcan_##id, SOCKET_CAN_NAME_##id, \ socket_can_init_##id, NULL, \ &socket_can_context_##id, NULL, \ CONFIG_CAN_INIT_PRIORITY, &socket_can_api, \ CANBUS_RAW_L2, NET_L2_GET_CTX_TYPE(CANBUS_RAW_L2), \ CAN_MTU); \ DT_INST_FOREACH_STATUS_OKAY(FLEXCAN_DEVICE_SOCKET_CAN) #endif