/* * Copyright (c) 2016 Open-RnD Sp. z o.o. * Copyright (c) 2016 Linaro Limited. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT st_stm32_uart /** * @brief Driver for UART port on STM32 family processor. * @note LPUART and U(S)ART have the same base and * majority of operations are performed the same way. * Please validate for newly added series. */ #include #include #include #include #include #include #include #include #include #include "uart_stm32.h" #include LOG_MODULE_REGISTER(uart_stm32); #define HAS_LPUART_1 (DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(lpuart1), \ st_stm32_lpuart, okay)) /* convenience defines */ #define DEV_CFG(dev) \ ((const struct uart_stm32_config * const)(dev)->config) #define DEV_DATA(dev) \ ((struct uart_stm32_data * const)(dev)->data) #define UART_STRUCT(dev) \ ((USART_TypeDef *)(DEV_CFG(dev))->uconf.base) #define TIMEOUT 1000 static inline void uart_stm32_set_baudrate(const struct device *dev, uint32_t baud_rate) { const struct uart_stm32_config *config = DEV_CFG(dev); struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); uint32_t clock_rate; /* Get clock rate */ if (clock_control_get_rate(data->clock, (clock_control_subsys_t *)&config->pclken, &clock_rate) < 0) { LOG_ERR("Failed call clock_control_get_rate"); return; } #if HAS_LPUART_1 if (IS_LPUART_INSTANCE(UartInstance)) { LL_LPUART_SetBaudRate(UartInstance, clock_rate, #ifdef USART_PRESC_PRESCALER LL_USART_PRESCALER_DIV1, #endif baud_rate); } else { #endif /* HAS_LPUART_1 */ LL_USART_SetBaudRate(UartInstance, clock_rate, #ifdef USART_PRESC_PRESCALER LL_USART_PRESCALER_DIV1, #endif #ifdef USART_CR1_OVER8 LL_USART_OVERSAMPLING_16, #endif baud_rate); #if HAS_LPUART_1 } #endif /* HAS_LPUART_1 */ } static inline void uart_stm32_set_parity(const struct device *dev, uint32_t parity) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_SetParity(UartInstance, parity); } static inline uint32_t uart_stm32_get_parity(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_GetParity(UartInstance); } static inline void uart_stm32_set_stopbits(const struct device *dev, uint32_t stopbits) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_SetStopBitsLength(UartInstance, stopbits); } static inline uint32_t uart_stm32_get_stopbits(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_GetStopBitsLength(UartInstance); } static inline void uart_stm32_set_databits(const struct device *dev, uint32_t databits) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_SetDataWidth(UartInstance, databits); } static inline uint32_t uart_stm32_get_databits(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_GetDataWidth(UartInstance); } static inline void uart_stm32_set_hwctrl(const struct device *dev, uint32_t hwctrl) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_SetHWFlowCtrl(UartInstance, hwctrl); } static inline uint32_t uart_stm32_get_hwctrl(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_GetHWFlowCtrl(UartInstance); } static inline uint32_t uart_stm32_cfg2ll_parity(enum uart_config_parity parity) { switch (parity) { case UART_CFG_PARITY_ODD: return LL_USART_PARITY_ODD; case UART_CFG_PARITY_EVEN: return LL_USART_PARITY_EVEN; case UART_CFG_PARITY_NONE: default: return LL_USART_PARITY_NONE; } } static inline enum uart_config_parity uart_stm32_ll2cfg_parity(uint32_t parity) { switch (parity) { case LL_USART_PARITY_ODD: return UART_CFG_PARITY_ODD; case LL_USART_PARITY_EVEN: return UART_CFG_PARITY_EVEN; case LL_USART_PARITY_NONE: default: return UART_CFG_PARITY_NONE; } } static inline uint32_t uart_stm32_cfg2ll_stopbits(enum uart_config_stop_bits sb) { switch (sb) { /* Some MCU's don't support 0.5 stop bits */ #ifdef LL_USART_STOPBITS_0_5 case UART_CFG_STOP_BITS_0_5: return LL_USART_STOPBITS_0_5; #endif /* LL_USART_STOPBITS_0_5 */ case UART_CFG_STOP_BITS_1: return LL_USART_STOPBITS_1; /* Some MCU's don't support 1.5 stop bits */ #ifdef LL_USART_STOPBITS_1_5 case UART_CFG_STOP_BITS_1_5: return LL_USART_STOPBITS_1_5; #endif /* LL_USART_STOPBITS_1_5 */ case UART_CFG_STOP_BITS_2: default: return LL_USART_STOPBITS_2; } } static inline enum uart_config_stop_bits uart_stm32_ll2cfg_stopbits(uint32_t sb) { switch (sb) { /* Some MCU's don't support 0.5 stop bits */ #ifdef LL_USART_STOPBITS_0_5 case LL_USART_STOPBITS_0_5: return UART_CFG_STOP_BITS_0_5; #endif /* LL_USART_STOPBITS_0_5 */ case LL_USART_STOPBITS_1: return UART_CFG_STOP_BITS_1; /* Some MCU's don't support 1.5 stop bits */ #ifdef LL_USART_STOPBITS_1_5 case LL_USART_STOPBITS_1_5: return UART_CFG_STOP_BITS_1_5; #endif /* LL_USART_STOPBITS_1_5 */ case LL_USART_STOPBITS_2: default: return UART_CFG_STOP_BITS_2; } } static inline uint32_t uart_stm32_cfg2ll_databits(enum uart_config_data_bits db) { switch (db) { /* Some MCU's don't support 7B or 9B datawidth */ #ifdef LL_USART_DATAWIDTH_7B case UART_CFG_DATA_BITS_7: return LL_USART_DATAWIDTH_7B; #endif /* LL_USART_DATAWIDTH_7B */ #ifdef LL_USART_DATAWIDTH_9B case UART_CFG_DATA_BITS_9: return LL_USART_DATAWIDTH_9B; #endif /* LL_USART_DATAWIDTH_9B */ case UART_CFG_DATA_BITS_8: default: return LL_USART_DATAWIDTH_8B; } } static inline enum uart_config_data_bits uart_stm32_ll2cfg_databits(uint32_t db) { switch (db) { /* Some MCU's don't support 7B or 9B datawidth */ #ifdef LL_USART_DATAWIDTH_7B case LL_USART_DATAWIDTH_7B: return UART_CFG_DATA_BITS_7; #endif /* LL_USART_DATAWIDTH_7B */ #ifdef LL_USART_DATAWIDTH_9B case LL_USART_DATAWIDTH_9B: return UART_CFG_DATA_BITS_9; #endif /* LL_USART_DATAWIDTH_9B */ case LL_USART_DATAWIDTH_8B: default: return UART_CFG_DATA_BITS_8; } } /** * @brief Get LL hardware flow control define from * Zephyr hardware flow control option. * @note Supports only UART_CFG_FLOW_CTRL_RTS_CTS. * @param fc: Zephyr hardware flow control option. * @retval LL_USART_HWCONTROL_RTS_CTS, or LL_USART_HWCONTROL_NONE. */ static inline uint32_t uart_stm32_cfg2ll_hwctrl(enum uart_config_flow_control fc) { if (fc == UART_CFG_FLOW_CTRL_RTS_CTS) { return LL_USART_HWCONTROL_RTS_CTS; } return LL_USART_HWCONTROL_NONE; } /** * @brief Get Zephyr hardware flow control option from * LL hardware flow control define. * @note Supports only LL_USART_HWCONTROL_RTS_CTS. * @param fc: LL hardware flow control definition. * @retval UART_CFG_FLOW_CTRL_RTS_CTS, or UART_CFG_FLOW_CTRL_NONE. */ static inline enum uart_config_flow_control uart_stm32_ll2cfg_hwctrl(uint32_t fc) { if (fc == LL_USART_HWCONTROL_RTS_CTS) { return UART_CFG_FLOW_CTRL_RTS_CTS; } return UART_CFG_FLOW_CTRL_NONE; } static int uart_stm32_configure(const struct device *dev, const struct uart_config *cfg) { struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); const uint32_t parity = uart_stm32_cfg2ll_parity(cfg->parity); const uint32_t stopbits = uart_stm32_cfg2ll_stopbits(cfg->stop_bits); const uint32_t databits = uart_stm32_cfg2ll_databits(cfg->data_bits); const uint32_t flowctrl = uart_stm32_cfg2ll_hwctrl(cfg->flow_ctrl); /* Hardware doesn't support mark or space parity */ if ((UART_CFG_PARITY_MARK == cfg->parity) || (UART_CFG_PARITY_SPACE == cfg->parity)) { return -ENOTSUP; } #if defined(LL_USART_STOPBITS_0_5) && HAS_LPUART_1 if (IS_LPUART_INSTANCE(UartInstance) && UART_CFG_STOP_BITS_0_5 == cfg->stop_bits) { return -ENOTSUP; } #else if (UART_CFG_STOP_BITS_0_5 == cfg->stop_bits) { return -ENOTSUP; } #endif #if defined(LL_USART_STOPBITS_1_5) && HAS_LPUART_1 if (IS_LPUART_INSTANCE(UartInstance) && UART_CFG_STOP_BITS_1_5 == cfg->stop_bits) { return -ENOTSUP; } #else if (UART_CFG_STOP_BITS_1_5 == cfg->stop_bits) { return -ENOTSUP; } #endif /* Driver doesn't support 5 or 6 databits and potentially 7 or 9 */ if ((UART_CFG_DATA_BITS_5 == cfg->data_bits) || (UART_CFG_DATA_BITS_6 == cfg->data_bits) #ifndef LL_USART_DATAWIDTH_7B || (UART_CFG_DATA_BITS_7 == cfg->data_bits) #endif /* LL_USART_DATAWIDTH_7B */ #ifndef LL_USART_DATAWIDTH_9B || (UART_CFG_DATA_BITS_9 == cfg->data_bits) #endif /* LL_USART_DATAWIDTH_9B */ ) { return -ENOTSUP; } /* Driver supports only RTS CTS flow control */ if (UART_CFG_FLOW_CTRL_NONE != cfg->flow_ctrl) { if (!IS_UART_HWFLOW_INSTANCE(UartInstance) || UART_CFG_FLOW_CTRL_RTS_CTS != cfg->flow_ctrl) { return -ENOTSUP; } } LL_USART_Disable(UartInstance); if (parity != uart_stm32_get_parity(dev)) { uart_stm32_set_parity(dev, parity); } if (stopbits != uart_stm32_get_stopbits(dev)) { uart_stm32_set_stopbits(dev, stopbits); } if (databits != uart_stm32_get_databits(dev)) { uart_stm32_set_databits(dev, databits); } if (flowctrl != uart_stm32_get_hwctrl(dev)) { uart_stm32_set_hwctrl(dev, flowctrl); } if (cfg->baudrate != data->baud_rate) { uart_stm32_set_baudrate(dev, cfg->baudrate); data->baud_rate = cfg->baudrate; } LL_USART_Enable(UartInstance); return 0; }; static int uart_stm32_config_get(const struct device *dev, struct uart_config *cfg) { struct uart_stm32_data *data = DEV_DATA(dev); cfg->baudrate = data->baud_rate; cfg->parity = uart_stm32_ll2cfg_parity(uart_stm32_get_parity(dev)); cfg->stop_bits = uart_stm32_ll2cfg_stopbits( uart_stm32_get_stopbits(dev)); cfg->data_bits = uart_stm32_ll2cfg_databits( uart_stm32_get_databits(dev)); cfg->flow_ctrl = uart_stm32_ll2cfg_hwctrl( uart_stm32_get_hwctrl(dev)); return 0; } static int uart_stm32_poll_in(const struct device *dev, unsigned char *c) { USART_TypeDef *UartInstance = UART_STRUCT(dev); /* Clear overrun error flag */ if (LL_USART_IsActiveFlag_ORE(UartInstance)) { LL_USART_ClearFlag_ORE(UartInstance); } if (!LL_USART_IsActiveFlag_RXNE(UartInstance)) { return -1; } *c = (unsigned char)LL_USART_ReceiveData8(UartInstance); return 0; } static void uart_stm32_poll_out(const struct device *dev, unsigned char c) { USART_TypeDef *UartInstance = UART_STRUCT(dev); /* Wait for TXE flag to be raised */ while (!LL_USART_IsActiveFlag_TXE(UartInstance)) { } LL_USART_ClearFlag_TC(UartInstance); LL_USART_TransmitData8(UartInstance, (uint8_t)c); } static int uart_stm32_err_check(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); uint32_t err = 0U; /* Check for errors, but don't clear them here. * Some SoC clear all error flags when at least * one is cleared. (e.g. F4X, F1X, and F2X) */ if (LL_USART_IsActiveFlag_ORE(UartInstance)) { err |= UART_ERROR_OVERRUN; } if (LL_USART_IsActiveFlag_PE(UartInstance)) { err |= UART_ERROR_PARITY; } if (LL_USART_IsActiveFlag_FE(UartInstance)) { err |= UART_ERROR_FRAMING; } if (err & UART_ERROR_OVERRUN) { LL_USART_ClearFlag_ORE(UartInstance); } if (err & UART_ERROR_PARITY) { LL_USART_ClearFlag_PE(UartInstance); } if (err & UART_ERROR_FRAMING) { LL_USART_ClearFlag_FE(UartInstance); } /* Clear noise error as well, * it is not represented by the errors enum */ LL_USART_ClearFlag_NE(UartInstance); return err; } static inline void __uart_stm32_get_clock(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); const struct device *clk = device_get_binding(STM32_CLOCK_CONTROL_NAME); __ASSERT_NO_MSG(clk); data->clock = clk; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_stm32_fifo_fill(const struct device *dev, const uint8_t *tx_data, int size) { USART_TypeDef *UartInstance = UART_STRUCT(dev); uint8_t num_tx = 0U; while ((size - num_tx > 0) && LL_USART_IsActiveFlag_TXE(UartInstance)) { /* TXE flag will be cleared with byte write to DR|RDR register */ /* Send a character (8bit , parity none) */ LL_USART_TransmitData8(UartInstance, tx_data[num_tx++]); } return num_tx; } static int uart_stm32_fifo_read(const struct device *dev, uint8_t *rx_data, const int size) { USART_TypeDef *UartInstance = UART_STRUCT(dev); uint8_t num_rx = 0U; while ((size - num_rx > 0) && LL_USART_IsActiveFlag_RXNE(UartInstance)) { /* RXNE flag will be cleared upon read from DR|RDR register */ /* Receive a character (8bit , parity none) */ rx_data[num_rx++] = LL_USART_ReceiveData8(UartInstance); /* Clear overrun error flag */ if (LL_USART_IsActiveFlag_ORE(UartInstance)) { LL_USART_ClearFlag_ORE(UartInstance); } } return num_rx; } static void uart_stm32_irq_tx_enable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_EnableIT_TC(UartInstance); } static void uart_stm32_irq_tx_disable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_DisableIT_TC(UartInstance); } static int uart_stm32_irq_tx_ready(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_IsActiveFlag_TXE(UartInstance); } static int uart_stm32_irq_tx_complete(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_IsActiveFlag_TC(UartInstance); } static void uart_stm32_irq_rx_enable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_EnableIT_RXNE(UartInstance); } static void uart_stm32_irq_rx_disable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); LL_USART_DisableIT_RXNE(UartInstance); } static int uart_stm32_irq_rx_ready(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return LL_USART_IsActiveFlag_RXNE(UartInstance); } static void uart_stm32_irq_err_enable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); /* Enable FE, ORE interruptions */ LL_USART_EnableIT_ERROR(UartInstance); #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) /* Enable Line break detection */ if (IS_UART_LIN_INSTANCE(UartInstance)) { LL_USART_EnableIT_LBD(UartInstance); } #endif /* Enable parity error interruption */ LL_USART_EnableIT_PE(UartInstance); } static void uart_stm32_irq_err_disable(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); /* Disable FE, ORE interruptions */ LL_USART_DisableIT_ERROR(UartInstance); #if !defined(CONFIG_SOC_SERIES_STM32F0X) || defined(USART_LIN_SUPPORT) /* Disable Line break detection */ if (IS_UART_LIN_INSTANCE(UartInstance)) { LL_USART_DisableIT_LBD(UartInstance); } #endif /* Disable parity error interruption */ LL_USART_DisableIT_PE(UartInstance); } static int uart_stm32_irq_is_pending(const struct device *dev) { USART_TypeDef *UartInstance = UART_STRUCT(dev); return ((LL_USART_IsActiveFlag_RXNE(UartInstance) && LL_USART_IsEnabledIT_RXNE(UartInstance)) || (LL_USART_IsActiveFlag_TC(UartInstance) && LL_USART_IsEnabledIT_TC(UartInstance))); } static int uart_stm32_irq_update(const struct device *dev) { return 1; } static void uart_stm32_irq_callback_set(const struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_stm32_data *data = DEV_DATA(dev); data->user_cb = cb; data->user_data = cb_data; } static void uart_stm32_isr(const struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); if (data->user_cb) { data->user_cb(dev, data->user_data); } } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static const struct uart_driver_api uart_stm32_driver_api = { .poll_in = uart_stm32_poll_in, .poll_out = uart_stm32_poll_out, .err_check = uart_stm32_err_check, .configure = uart_stm32_configure, .config_get = uart_stm32_config_get, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_stm32_fifo_fill, .fifo_read = uart_stm32_fifo_read, .irq_tx_enable = uart_stm32_irq_tx_enable, .irq_tx_disable = uart_stm32_irq_tx_disable, .irq_tx_ready = uart_stm32_irq_tx_ready, .irq_tx_complete = uart_stm32_irq_tx_complete, .irq_rx_enable = uart_stm32_irq_rx_enable, .irq_rx_disable = uart_stm32_irq_rx_disable, .irq_rx_ready = uart_stm32_irq_rx_ready, .irq_err_enable = uart_stm32_irq_err_enable, .irq_err_disable = uart_stm32_irq_err_disable, .irq_is_pending = uart_stm32_irq_is_pending, .irq_update = uart_stm32_irq_update, .irq_callback_set = uart_stm32_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; /** * @brief Initialize UART channel * * This routine is called to reset the chip in a quiescent state. * It is assumed that this function is called only once per UART. * * @param dev UART device struct * * @return 0 */ static int uart_stm32_init(const struct device *dev) { const struct uart_stm32_config *config = DEV_CFG(dev); struct uart_stm32_data *data = DEV_DATA(dev); USART_TypeDef *UartInstance = UART_STRUCT(dev); uint32_t ll_parity; uint32_t ll_datawidth; __uart_stm32_get_clock(dev); /* enable clock */ if (clock_control_on(data->clock, (clock_control_subsys_t *)&config->pclken) != 0) { return -EIO; } LL_USART_Disable(UartInstance); /* TX/RX direction */ LL_USART_SetTransferDirection(UartInstance, LL_USART_DIRECTION_TX_RX); /* Determine the datawidth and parity. If we use other parity than * 'none' we must use datawidth = 9 (to get 8 databit + 1 parity bit). */ if (config->parity == 2) { /* 8 databit, 1 parity bit, parity even */ ll_parity = LL_USART_PARITY_EVEN; ll_datawidth = LL_USART_DATAWIDTH_9B; } else if (config->parity == 1) { /* 8 databit, 1 parity bit, parity odd */ ll_parity = LL_USART_PARITY_ODD; ll_datawidth = LL_USART_DATAWIDTH_9B; } else { /* Default to 8N0, but show warning if invalid value */ if (config->parity != 0) { LOG_WRN("Invalid parity setting '%d'." "Defaulting to 'none'.", config->parity); } /* 8 databit, parity none */ ll_parity = LL_USART_PARITY_NONE; ll_datawidth = LL_USART_DATAWIDTH_8B; } /* Set datawidth and parity, 1 start bit, 1 stop bit */ LL_USART_ConfigCharacter(UartInstance, ll_datawidth, ll_parity, LL_USART_STOPBITS_1); if (config->hw_flow_control) { uart_stm32_set_hwctrl(dev, LL_USART_HWCONTROL_RTS_CTS); } /* Set the default baudrate */ uart_stm32_set_baudrate(dev, data->baud_rate); LL_USART_Enable(UartInstance); #ifdef USART_ISR_TEACK /* Wait until TEACK flag is set */ while (!(LL_USART_IsActiveFlag_TEACK(UartInstance))) { } #endif /* !USART_ISR_TEACK */ #ifdef USART_ISR_REACK /* Wait until REACK flag is set */ while (!(LL_USART_IsActiveFlag_REACK(UartInstance))) { } #endif /* !USART_ISR_REACK */ #ifdef CONFIG_UART_INTERRUPT_DRIVEN config->uconf.irq_config_func(dev); #endif return 0; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN #define STM32_UART_IRQ_HANDLER_DECL(index) \ static void uart_stm32_irq_config_func_##index(struct device *dev) #define STM32_UART_IRQ_HANDLER_FUNC(index) \ .irq_config_func = uart_stm32_irq_config_func_##index, #define STM32_UART_IRQ_HANDLER(index) \ static void uart_stm32_irq_config_func_##index(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(index), \ DT_INST_IRQ(index, priority), \ uart_stm32_isr, DEVICE_GET(uart_stm32_##index), \ 0); \ irq_enable(DT_INST_IRQN(index)); \ } #else #define STM32_UART_IRQ_HANDLER_DECL(index) #define STM32_UART_IRQ_HANDLER_FUNC(index) #define STM32_UART_IRQ_HANDLER(index) #endif #define STM32_UART_INIT(index) \ STM32_UART_IRQ_HANDLER_DECL(index); \ \ static const struct uart_stm32_config uart_stm32_cfg_##index = { \ .uconf = { \ .base = (uint8_t *)DT_INST_REG_ADDR(index),\ STM32_UART_IRQ_HANDLER_FUNC(index) \ }, \ .pclken = { .bus = DT_INST_CLOCKS_CELL(index, bus), \ .enr = DT_INST_CLOCKS_CELL(index, bits) \ }, \ .hw_flow_control = DT_INST_PROP(index, hw_flow_control),\ .parity = DT_INST_PROP(index, parity)\ }; \ \ static struct uart_stm32_data uart_stm32_data_##index = { \ .baud_rate = DT_INST_PROP(index, current_speed) \ }; \ \ DEVICE_AND_API_INIT(uart_stm32_##index, DT_INST_LABEL(index),\ &uart_stm32_init, \ &uart_stm32_data_##index, &uart_stm32_cfg_##index, \ PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \ &uart_stm32_driver_api); \ \ STM32_UART_IRQ_HANDLER(index) DT_INST_FOREACH_STATUS_OKAY(STM32_UART_INIT)