/* * Copyright (c) 2016 Open-RnD Sp. z o.o. * Copyright (c) 2016 Linaro Limited. * * SPDX-License-Identifier: Apache-2.0 */ /** * @brief Driver for UART port on STM32F10x family processor. * * Based on reference manual: * STM32F101xx, STM32F102xx, STM32F103xx, STM32F105xx and STM32F107xx * advanced ARM ® -based 32-bit MCUs * * Chapter 27: Universal synchronous asynchronous receiver * transmitter (USART) */ #include #include #include #include #include #include #include #include #include #include "uart_stm32.h" /* convenience defines */ #define DEV_CFG(dev) \ ((const struct uart_stm32_config * const)(dev)->config->config_info) #define DEV_DATA(dev) \ ((struct uart_stm32_data * const)(dev)->driver_data) #define UART_STRUCT(dev) \ ((USART_TypeDef *)(DEV_CFG(dev))->uconf.base) #define TIMEOUT 1000 static int uart_stm32_poll_in(struct device *dev, unsigned char *c) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; if (HAL_UART_Receive(UartHandle, (u8_t *)c, 1, TIMEOUT) == HAL_OK) { return 0; } else { return -1; } } static unsigned char uart_stm32_poll_out(struct device *dev, unsigned char c) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; HAL_UART_Transmit(UartHandle, (u8_t *)&c, 1, TIMEOUT); return c; } static inline void __uart_stm32_get_clock(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); struct device *clk = device_get_binding(STM32_CLOCK_CONTROL_NAME); __ASSERT_NO_MSG(clk); data->clock = clk; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN static int uart_stm32_fifo_fill(struct device *dev, const u8_t *tx_data, int size) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; u8_t num_tx = 0; while ((size - num_tx > 0) && __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_TXE)) { /* TXE flag will be cleared with byte write to DR register */ /* Send a character (8bit , parity none) */ #if defined(CONFIG_SOC_SERIES_STM32F1X) || defined(CONFIG_SOC_SERIES_STM32F4X) /* Use direct access for F1, F4 until Low Level API is available * Once it is we can remove the if/else */ UartHandle->Instance->DR = (tx_data[num_tx++] & (u8_t)0x00FF); #else LL_USART_TransmitData8(UartHandle->Instance, tx_data[num_tx++]); #endif } return num_tx; } static int uart_stm32_fifo_read(struct device *dev, u8_t *rx_data, const int size) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; u8_t num_rx = 0; while ((size - num_rx > 0) && __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_RXNE)) { /* Clear the interrupt */ __HAL_UART_CLEAR_FLAG(UartHandle, UART_FLAG_RXNE); /* Receive a character (8bit , parity none) */ #if defined(CONFIG_SOC_SERIES_STM32F1X) || defined(CONFIG_SOC_SERIES_STM32F4X) /* Use direct access for F1, F4 until Low Level API is available * Once it is we can remove the if/else */ rx_data[num_rx++] = (u8_t)(UartHandle->Instance->DR & (u8_t)0x00FF); #else rx_data[num_rx++] = LL_USART_ReceiveData8(UartHandle->Instance); #endif } return num_rx; } static void uart_stm32_irq_tx_enable(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; __HAL_UART_ENABLE_IT(UartHandle, UART_IT_TC); } static void uart_stm32_irq_tx_disable(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; __HAL_UART_DISABLE_IT(UartHandle, UART_IT_TC); } static int uart_stm32_irq_tx_ready(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; return __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_TXE); } static int uart_stm32_irq_tx_empty(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; return __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_TXE); } static void uart_stm32_irq_rx_enable(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; __HAL_UART_ENABLE_IT(UartHandle, UART_IT_RXNE); } static void uart_stm32_irq_rx_disable(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; __HAL_UART_DISABLE_IT(UartHandle, UART_IT_RXNE); } static int uart_stm32_irq_rx_ready(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; return __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_RXNE); } static void uart_stm32_irq_err_enable(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; /* Enable FE, ORE interruptions */ __HAL_UART_ENABLE_IT(UartHandle, UART_IT_ERR); /* Enable Line break detection */ __HAL_UART_ENABLE_IT(UartHandle, UART_IT_LBD); /* Enable parity error interruption */ __HAL_UART_ENABLE_IT(UartHandle, UART_IT_PE); } static void uart_stm32_irq_err_disable(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; /* Disable FE, ORE interruptions */ __HAL_UART_DISABLE_IT(UartHandle, UART_IT_ERR); /* Disable Line break detection */ __HAL_UART_DISABLE_IT(UartHandle, UART_IT_LBD); /* Disable parity error interruption */ __HAL_UART_DISABLE_IT(UartHandle, UART_IT_PE); } static int uart_stm32_irq_is_pending(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; return __HAL_UART_GET_FLAG(UartHandle, UART_FLAG_TXE | UART_FLAG_RXNE); } static int uart_stm32_irq_update(struct device *dev) { struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; __HAL_UART_CLEAR_FLAG(UartHandle, UART_FLAG_TC); return 1; } static void uart_stm32_irq_callback_set(struct device *dev, uart_irq_callback_t cb) { struct uart_stm32_data *data = DEV_DATA(dev); data->user_cb = cb; } static void uart_stm32_isr(void *arg) { struct device *dev = arg; struct uart_stm32_data *data = DEV_DATA(dev); if (data->user_cb) { data->user_cb(dev); } } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static const struct uart_driver_api uart_stm32_driver_api = { .poll_in = uart_stm32_poll_in, .poll_out = uart_stm32_poll_out, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_stm32_fifo_fill, .fifo_read = uart_stm32_fifo_read, .irq_tx_enable = uart_stm32_irq_tx_enable, .irq_tx_disable = uart_stm32_irq_tx_disable, .irq_tx_ready = uart_stm32_irq_tx_ready, .irq_tx_empty = uart_stm32_irq_tx_empty, .irq_rx_enable = uart_stm32_irq_rx_enable, .irq_rx_disable = uart_stm32_irq_rx_disable, .irq_rx_ready = uart_stm32_irq_rx_ready, .irq_err_enable = uart_stm32_irq_err_enable, .irq_err_disable = uart_stm32_irq_err_disable, .irq_is_pending = uart_stm32_irq_is_pending, .irq_update = uart_stm32_irq_update, .irq_callback_set = uart_stm32_irq_callback_set, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }; /** * @brief Initialize UART channel * * This routine is called to reset the chip in a quiescent state. * It is assumed that this function is called only once per UART. * * @param dev UART device struct * * @return 0 */ static int uart_stm32_init(struct device *dev) { const struct uart_stm32_config *config = DEV_CFG(dev); struct uart_stm32_data *data = DEV_DATA(dev); UART_HandleTypeDef *UartHandle = &data->huart; __uart_stm32_get_clock(dev); /* enable clock */ #if defined(CONFIG_SOC_SERIES_STM32F1X) clock_control_on(data->clock, config->clock_subsys); #elif defined(CONFIG_CLOCK_CONTROL_STM32_CUBE) clock_control_on(data->clock, (clock_control_subsys_t *)&config->pclken); #endif UartHandle->Instance = UART_STRUCT(dev); UartHandle->Init.WordLength = UART_WORDLENGTH_8B; UartHandle->Init.StopBits = UART_STOPBITS_1; UartHandle->Init.Parity = UART_PARITY_NONE; UartHandle->Init.HwFlowCtl = UART_HWCONTROL_NONE; UartHandle->Init.Mode = UART_MODE_TX_RX; UartHandle->Init.OverSampling = UART_OVERSAMPLING_16; HAL_UART_Init(UartHandle); #ifdef CONFIG_UART_INTERRUPT_DRIVEN config->uconf.irq_config_func(dev); #endif return 0; } #ifdef CONFIG_UART_STM32_PORT_1 #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_stm32_irq_config_func_1(struct device *dev); #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static const struct uart_stm32_config uart_stm32_dev_cfg_1 = { .uconf = { .base = (u8_t *)CONFIG_UART_STM32_PORT_1_BASE_ADDRESS, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .irq_config_func = uart_stm32_irq_config_func_1, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }, #ifdef CONFIG_CLOCK_CONTROL_STM32_CUBE .pclken = { .bus = STM32_CLOCK_BUS_APB2, .enr = LL_APB2_GRP1_PERIPH_USART1 }, #else .clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART1), #endif /* CLOCK_CONTROL_STM32_CUBE */ }; static struct uart_stm32_data uart_stm32_dev_data_1 = { .huart = { .Init = { .BaudRate = CONFIG_UART_STM32_PORT_1_BAUD_RATE } } }; DEVICE_AND_API_INIT(uart_stm32_1, CONFIG_UART_STM32_PORT_1_NAME, &uart_stm32_init, &uart_stm32_dev_data_1, &uart_stm32_dev_cfg_1, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &uart_stm32_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_stm32_irq_config_func_1(struct device *dev) { IRQ_CONNECT(PORT_1_IRQ, CONFIG_UART_STM32_PORT_1_IRQ_PRI, uart_stm32_isr, DEVICE_GET(uart_stm32_1), 0); irq_enable(PORT_1_IRQ); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #endif /* CONFIG_UART_STM32_PORT_1 */ #ifdef CONFIG_UART_STM32_PORT_2 #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_stm32_irq_config_func_2(struct device *dev); #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static const struct uart_stm32_config uart_stm32_dev_cfg_2 = { .uconf = { .base = (u8_t *)CONFIG_UART_STM32_PORT_2_BASE_ADDRESS, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .irq_config_func = uart_stm32_irq_config_func_2, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }, #ifdef CONFIG_CLOCK_CONTROL_STM32_CUBE .pclken = { .bus = STM32_CLOCK_BUS_APB1, .enr = LL_APB1_GRP1_PERIPH_USART2 }, #else .clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART2), #endif /* CLOCK_CONTROL_STM32_CUBE */ }; static struct uart_stm32_data uart_stm32_dev_data_2 = { .huart = { .Init = { .BaudRate = CONFIG_UART_STM32_PORT_2_BAUD_RATE} } }; DEVICE_AND_API_INIT(uart_stm32_2, CONFIG_UART_STM32_PORT_2_NAME, &uart_stm32_init, &uart_stm32_dev_data_2, &uart_stm32_dev_cfg_2, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &uart_stm32_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_stm32_irq_config_func_2(struct device *dev) { IRQ_CONNECT(PORT_2_IRQ, CONFIG_UART_STM32_PORT_2_IRQ_PRI, uart_stm32_isr, DEVICE_GET(uart_stm32_2), 0); irq_enable(PORT_2_IRQ); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #endif /* CONFIG_UART_STM32_PORT_2 */ #ifdef CONFIG_UART_STM32_PORT_3 #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_stm32_irq_config_func_3(struct device *dev); #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ static const struct uart_stm32_config uart_stm32_dev_cfg_3 = { .uconf = { .base = (u8_t *)CONFIG_UART_STM32_PORT_3_BASE_ADDRESS, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .irq_config_func = uart_stm32_irq_config_func_3, #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ }, #ifdef CONFIG_CLOCK_CONTROL_STM32_CUBE .pclken = { .bus = STM32_CLOCK_BUS_APB1, .enr = LL_APB1_GRP1_PERIPH_USART3 }, #else .clock_subsys = UINT_TO_POINTER(STM32F10X_CLOCK_SUBSYS_USART3), #endif /* CLOCK_CONTROL_STM32_CUBE */ }; static struct uart_stm32_data uart_stm32_dev_data_3 = { .huart = { .Init = { .BaudRate = CONFIG_UART_STM32_PORT_3_BAUD_RATE} } }; DEVICE_AND_API_INIT(uart_stm32_3, CONFIG_UART_STM32_PORT_3_NAME, &uart_stm32_init, &uart_stm32_dev_data_3, &uart_stm32_dev_cfg_3, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &uart_stm32_driver_api); #ifdef CONFIG_UART_INTERRUPT_DRIVEN static void uart_stm32_irq_config_func_3(struct device *dev) { IRQ_CONNECT(PORT_3_IRQ, CONFIG_UART_STM32_PORT_3_IRQ_PRI, uart_stm32_isr, DEVICE_GET(uart_stm32_3), 0); irq_enable(PORT_3_IRQ); } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #endif /* CONFIG_UART_STM32_PORT_3 */