/* * Copyright (c) 2018, Cue Health Inc * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #define LOG_LEVEL CONFIG_PWM_LOG_LEVEL #include LOG_MODULE_REGISTER(pwm_nrfx); #define PWM_NRFX_CH_POLARITY_MASK BIT(15) #define PWM_NRFX_CH_PULSE_CYCLES_MASK BIT_MASK(15) #define PWM_NRFX_CH_VALUE_NORMAL PWM_NRFX_CH_POLARITY_MASK #define PWM_NRFX_CH_VALUE_INVERTED (0) #define PWM_NRFX_CH_PIN_MASK ~NRFX_PWM_PIN_INVERTED struct pwm_nrfx_config { nrfx_pwm_t pwm; nrfx_pwm_config_t initial_config; nrf_pwm_sequence_t seq; }; struct pwm_nrfx_data { uint32_t period_cycles; uint16_t current[NRF_PWM_CHANNEL_COUNT]; uint16_t countertop; uint8_t prescaler; }; static int pwm_period_check_and_set(const struct pwm_nrfx_config *config, struct pwm_nrfx_data *data, uint32_t channel, uint32_t period_cycles) { uint8_t i; uint8_t prescaler; uint32_t countertop; /* If any other channel (other than the one being configured) is set up * with a non-zero pulse cycle, the period that is currently set cannot * be changed, as this would influence the output for this channel. */ for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i) { if (i != channel) { uint16_t channel_pulse_cycle = data->current[i] & PWM_NRFX_CH_PULSE_CYCLES_MASK; if (channel_pulse_cycle > 0) { LOG_ERR("Incompatible period."); return -EINVAL; } } } /* Try to find a prescaler that will allow setting the requested period * after prescaling as the countertop value for the PWM peripheral. */ prescaler = 0; countertop = period_cycles; do { if (countertop <= PWM_COUNTERTOP_COUNTERTOP_Msk) { data->period_cycles = period_cycles; data->prescaler = prescaler; data->countertop = (uint16_t)countertop; nrf_pwm_configure(config->pwm.p_registers, data->prescaler, config->initial_config.count_mode, data->countertop); return 0; } countertop >>= 1; ++prescaler; } while (prescaler <= PWM_PRESCALER_PRESCALER_Msk); LOG_ERR("Prescaler for period_cycles %u not found.", period_cycles); return -EINVAL; } static uint8_t pwm_channel_map(const uint8_t *output_pins, uint32_t pwm) { uint8_t i; /* Find pin, return channel number */ for (i = 0U; i < NRF_PWM_CHANNEL_COUNT; i++) { if (output_pins[i] != NRFX_PWM_PIN_NOT_USED && (pwm == (output_pins[i] & PWM_NRFX_CH_PIN_MASK))) { return i; } } /* Return NRF_PWM_CHANNEL_COUNT to show that PWM pin was not found. */ return NRF_PWM_CHANNEL_COUNT; } static bool pwm_channel_is_active(uint8_t channel, const struct pwm_nrfx_data *data) { uint16_t pulse_cycle = data->current[channel] & PWM_NRFX_CH_PULSE_CYCLES_MASK; return (pulse_cycle > 0 && pulse_cycle < data->countertop); } static bool any_other_channel_is_active(uint8_t channel, const struct pwm_nrfx_data *data) { uint8_t i; for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i) { if (i != channel && pwm_channel_is_active(i, data)) { return true; } } return false; } static int pwm_nrfx_pin_set(const struct device *dev, uint32_t pwm, uint32_t period_cycles, uint32_t pulse_cycles, pwm_flags_t flags) { /* We assume here that period_cycles will always be 16MHz * peripheral clock. Since pwm_nrfx_get_cycles_per_sec() function might * be removed, see ISSUE #6958. * TODO: Remove this comment when issue has been resolved. */ const struct pwm_nrfx_config *config = dev->config; struct pwm_nrfx_data *data = dev->data; uint8_t channel; bool was_stopped; if (flags) { /* PWM polarity not supported (yet?) */ return -ENOTSUP; } /* Check if PWM pin is one of the predefiend DTS config pins. * Return its array index (channel number), * or NRF_PWM_CHANNEL_COUNT if not initialized through DTS. */ channel = pwm_channel_map(config->initial_config.output_pins, pwm); if (channel == NRF_PWM_CHANNEL_COUNT) { LOG_ERR("PWM pin %d not enabled through DTS configuration.", pwm); return -EINVAL; } /* Check if nrfx_pwm_stop function was called in previous * pwm_nrfx_pin_set call. Relying only on state returned by * nrfx_pwm_is_stopped may cause race condition if the pwm_nrfx_pin_set * is called multiple times in quick succession. */ was_stopped = !pwm_channel_is_active(channel, data) && !any_other_channel_is_active(channel, data); /* If this PWM is in center-aligned mode, pulse and period lengths * are effectively doubled by the up-down count, so halve them here * to compensate. */ if (config->initial_config.count_mode == NRF_PWM_MODE_UP_AND_DOWN) { period_cycles /= 2; pulse_cycles /= 2; } /* Check if period_cycles is either matching currently used, or * possible to use with our prescaler options. * Don't do anything if the period length happens to be zero. * In such case, pulse cycles will be right below limited to 0 * and this will result in making the channel inactive. */ if (period_cycles != 0 && period_cycles != data->period_cycles) { int ret = pwm_period_check_and_set(config, data, channel, period_cycles); if (ret) { return ret; } } /* Limit pulse cycles to period cycles (meaning 100% duty), bigger * values might not fit after prescaling into the 15-bit field that * is filled below. */ pulse_cycles = MIN(pulse_cycles, period_cycles); /* Store new pulse value bit[14:0], and polarity bit[15] for channel. */ data->current[channel] = ( (data->current[channel] & PWM_NRFX_CH_POLARITY_MASK) | (pulse_cycles >> data->prescaler)); LOG_DBG("pin %u, pulse %u, period %u, prescaler: %u.", pwm, pulse_cycles, period_cycles, data->prescaler); /* If this channel turns out to not need to be driven by the PWM * peripheral (it is off or fully on - duty 0% or 100%), set properly * the GPIO configuration for its output pin. This will provide * the correct output state for this channel when the PWM peripheral * is disabled after all channels appear to be inactive. */ if (!pwm_channel_is_active(channel, data)) { /* If pulse 0% and pin not inverted, set LOW. * If pulse 100% and pin inverted, set LOW. * If pulse 0% and pin inverted, set HIGH. * If pulse 100% and pin not inverted, set HIGH. */ bool channel_inverted_state = config->initial_config.output_pins[channel] & NRFX_PWM_PIN_INVERTED; bool pulse_0_and_not_inverted = (pulse_cycles == 0U) && !channel_inverted_state; bool pulse_100_and_inverted = (pulse_cycles == period_cycles) && channel_inverted_state; if (pulse_0_and_not_inverted || pulse_100_and_inverted) { nrf_gpio_pin_clear(pwm); } else { nrf_gpio_pin_set(pwm); } if (!any_other_channel_is_active(channel, data)) { nrfx_pwm_stop(&config->pwm, false); } } else { /* Since we are playing the sequence in a loop, the * sequence only has to be started when its not already * playing. The new channel values will be used * immediately when they are written into the seq array. */ if (was_stopped) { /* Wait until PWM will be stopped and then start the * sequence. */ while (!nrfx_pwm_is_stopped(&config->pwm)) { } nrfx_pwm_simple_playback(&config->pwm, &config->seq, 1, NRFX_PWM_FLAG_LOOP); } } return 0; } static int pwm_nrfx_get_cycles_per_sec(const struct device *dev, uint32_t pwm, uint64_t *cycles) { /* TODO: Since this function might be removed, we will always return * 16MHz from this function and handle the conversion with prescaler, * etc, in the pin set function. See issue #6958. */ *cycles = 16ul * 1000ul * 1000ul; return 0; } static const struct pwm_driver_api pwm_nrfx_drv_api_funcs = { .pin_set = pwm_nrfx_pin_set, .get_cycles_per_sec = pwm_nrfx_get_cycles_per_sec, }; static int pwm_nrfx_init(const struct device *dev) { const struct pwm_nrfx_config *config = dev->config; struct pwm_nrfx_data *data = dev->data; for (size_t i = 0; i < ARRAY_SIZE(data->current); i++) { bool inverted = config->initial_config.output_pins[i] & NRFX_PWM_PIN_INVERTED; uint16_t value = (inverted)?(PWM_NRFX_CH_VALUE_INVERTED):(PWM_NRFX_CH_VALUE_NORMAL); data->current[i] = value; }; nrfx_err_t result = nrfx_pwm_init(&config->pwm, &config->initial_config, NULL, NULL); if (result != NRFX_SUCCESS) { LOG_ERR("Failed to initialize device: %s", dev->name); return -EBUSY; } return 0; } #ifdef CONFIG_PM_DEVICE static void pwm_nrfx_uninit(const struct device *dev) { const struct pwm_nrfx_config *config = dev->config; nrfx_pwm_uninit(&config->pwm); memset(dev->data, 0, sizeof(struct pwm_nrfx_data)); } static int pwm_nrfx_pm_action(const struct device *dev, enum pm_device_action action) { int err = 0; switch (action) { case PM_DEVICE_ACTION_RESUME: err = pwm_nrfx_init(dev); break; case PM_DEVICE_ACTION_SUSPEND: pwm_nrfx_uninit(dev); break; default: return -ENOTSUP; } return err; } #else #define pwm_nrfx_pm_action NULL #endif /* CONFIG_PM_DEVICE */ #define PWM(dev_idx) DT_NODELABEL(pwm##dev_idx) #define PWM_PROP(dev_idx, prop) DT_PROP(PWM(dev_idx), prop) #define PWM_NRFX_IS_INVERTED(dev_idx, ch_idx) \ PWM_PROP(dev_idx, ch##ch_idx##_inverted) #define PWM_NRFX_CH_PIN(dev_idx, ch_idx) \ COND_CODE_1(DT_NODE_HAS_PROP(PWM(dev_idx), ch##ch_idx##_pin), \ (PWM_PROP(dev_idx, ch##ch_idx##_pin)), \ (NRFX_PWM_PIN_NOT_USED)) #define PWM_NRFX_OUTPUT_PIN(dev_idx, ch_idx) \ (PWM_NRFX_CH_PIN(dev_idx, ch_idx) | \ (PWM_NRFX_IS_INVERTED(dev_idx, ch_idx) ? NRFX_PWM_PIN_INVERTED : 0)) #define PWM_NRFX_COUNT_MODE(dev_idx) \ (PWM_PROP(dev_idx, center_aligned) ? \ NRF_PWM_MODE_UP_AND_DOWN : NRF_PWM_MODE_UP) #define PWM_NRFX_DEVICE(idx) \ static struct pwm_nrfx_data pwm_nrfx_##idx##_data; \ static const struct pwm_nrfx_config pwm_nrfx_##idx##config = { \ .pwm = NRFX_PWM_INSTANCE(idx), \ .initial_config = { \ .output_pins = { \ PWM_NRFX_OUTPUT_PIN(idx, 0), \ PWM_NRFX_OUTPUT_PIN(idx, 1), \ PWM_NRFX_OUTPUT_PIN(idx, 2), \ PWM_NRFX_OUTPUT_PIN(idx, 3), \ }, \ .base_clock = NRF_PWM_CLK_1MHz, \ .count_mode = PWM_NRFX_COUNT_MODE(idx), \ .top_value = 1000, \ .load_mode = NRF_PWM_LOAD_INDIVIDUAL, \ .step_mode = NRF_PWM_STEP_TRIGGERED, \ }, \ .seq.values.p_raw = pwm_nrfx_##idx##_data.current, \ .seq.length = NRF_PWM_CHANNEL_COUNT \ }; \ PM_DEVICE_DT_DEFINE(PWM(idx), pwm_nrfx_pm_action); \ DEVICE_DT_DEFINE(PWM(idx), \ pwm_nrfx_init, PM_DEVICE_DT_GET(PWM(idx)), \ &pwm_nrfx_##idx##_data, \ &pwm_nrfx_##idx##config, \ POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \ &pwm_nrfx_drv_api_funcs) #if DT_NODE_HAS_STATUS(DT_NODELABEL(pwm0), okay) PWM_NRFX_DEVICE(0); #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(pwm1), okay) PWM_NRFX_DEVICE(1); #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(pwm2), okay) PWM_NRFX_DEVICE(2); #endif #if DT_NODE_HAS_STATUS(DT_NODELABEL(pwm3), okay) PWM_NRFX_DEVICE(3); #endif