/* * Copyright (c) 2023 Prevas A/S * Copyright (c) 2023 Syslinbit * * SPDX-License-Identifier: Apache-2.0 * */ #define DT_DRV_COMPAT st_stm32_rtc #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(rtc_stm32, CONFIG_RTC_LOG_LEVEL); /* Convert calendar start time */ /* RTC start time: 1st, Jan, 2000 */ /* struct tm start: 1st, Jan, 1900 */ #define TM_TO_RTC_OFFSET 100 /* Convert part per billion calibration value to a number of clock pulses added or removed each * 2^20 clock cycles so it is suitable for the CALR register fields * * nb_pulses = ppb * 2^20 / 10^9 = ppb * 2^11 / 5^9 = ppb * 2048 / 1953125 */ #define PPB_TO_NB_PULSES(ppb) DIV_ROUND_CLOSEST((ppb) * 2048, 1953125) /* Convert CALR register value (number of clock pulses added or removed each 2^20 clock cycles) * to part ber billion calibration value * * ppb = nb_pulses * 10^9 / 2^20 = nb_pulses * 5^9 / 2^11 = nb_pulses * 1953125 / 2048 */ #define NB_PULSES_TO_PPB(pulses) DIV_ROUND_CLOSEST((pulses) * 1953125, 2048) /* CALP field can only be 512 or 0 as in reality CALP is a single bit field representing 512 pulses * added every 2^20 clock cycles */ #define MAX_CALP (512) #define MAX_CALM (511) #define MAX_PPB NB_PULSES_TO_PPB(MAX_CALP) #define MIN_PPB -NB_PULSES_TO_PPB(MAX_CALM) struct rtc_stm32_config { LL_RTC_InitTypeDef ll_rtc_config; const struct stm32_pclken *pclken; }; struct rtc_stm32_data { /* Currently empty */ }; static int rtc_stm32_init(const struct device *dev) { const struct device *const clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); const struct rtc_stm32_config *cfg = dev->config; if (!device_is_ready(clk)) { LOG_ERR("clock control device not ready"); return -ENODEV; } /* Enable RTC bus clock */ if (clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]) != 0) { LOG_ERR("clock op failed\n"); return -EIO; } /* Enable Backup access */ z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); #if defined(PWR_CR_DBP) || defined(PWR_CR1_DBP) || defined(PWR_DBPCR_DBP) || defined(PWR_DBPR_DBP) LL_PWR_EnableBkUpAccess(); #endif /* PWR_CR_DBP || PWR_CR1_DBP || PWR_DBPR_DBP */ /* Enable RTC clock source */ if (clock_control_configure(clk, (clock_control_subsys_t)&cfg->pclken[1], NULL) != 0) { LOG_ERR("clock configure failed\n"); return -EIO; } LL_RCC_EnableRTC(); z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); if (LL_RTC_Init(RTC, ((LL_RTC_InitTypeDef *)&cfg->ll_rtc_config)) != SUCCESS) { return -EIO; } #ifdef RTC_CR_BYPSHAD LL_RTC_DisableWriteProtection(RTC); LL_RTC_EnableShadowRegBypass(RTC); LL_RTC_EnableWriteProtection(RTC); #endif /* RTC_CR_BYPSHAD */ return 0; } static const struct stm32_pclken rtc_clk[] = STM32_DT_INST_CLOCKS(0); static const struct rtc_stm32_config rtc_config = { .ll_rtc_config = { .HourFormat = LL_RTC_HOURFORMAT_24HOUR, #if DT_INST_CLOCKS_CELL(1, bus) == STM32_SRC_LSI /* prescaler values for LSI @ 32 KHz */ .AsynchPrescaler = 0x7F, .SynchPrescaler = 0x00F9, #else /* DT_INST_CLOCKS_CELL(1, bus) == STM32_SRC_LSE */ /* prescaler values for LSE @ 32768 Hz */ .AsynchPrescaler = 0x7F, .SynchPrescaler = 0x00FF, #endif }, .pclken = rtc_clk, }; static int rtc_stm32_set_time(const struct device *dev, const struct rtc_time *timeptr) { LOG_INF("Setting clock"); LL_RTC_DisableWriteProtection(RTC); LL_RTC_EnableInitMode(RTC); while (!LL_RTC_IsActiveFlag_INIT(RTC)) { }; LL_RTC_DATE_SetYear(RTC, __LL_RTC_CONVERT_BIN2BCD(timeptr->tm_year - TM_TO_RTC_OFFSET)); LL_RTC_DATE_SetMonth(RTC, __LL_RTC_CONVERT_BIN2BCD(timeptr->tm_mon + 1)); LL_RTC_DATE_SetDay(RTC, __LL_RTC_CONVERT_BIN2BCD(timeptr->tm_mday)); if (timeptr->tm_wday == 0) { /* sunday (tm_wday = 0) is not represented by the same value in hardware */ LL_RTC_DATE_SetWeekDay(RTC, LL_RTC_WEEKDAY_SUNDAY); } else { /* all the other values are consistent with what is expected by hardware */ LL_RTC_DATE_SetWeekDay(RTC, timeptr->tm_wday); } LL_RTC_TIME_SetHour(RTC, __LL_RTC_CONVERT_BIN2BCD(timeptr->tm_hour)); LL_RTC_TIME_SetMinute(RTC, __LL_RTC_CONVERT_BIN2BCD(timeptr->tm_min)); LL_RTC_TIME_SetSecond(RTC, __LL_RTC_CONVERT_BIN2BCD(timeptr->tm_sec)); LL_RTC_DisableInitMode(RTC); LL_RTC_EnableWriteProtection(RTC); return 0; } static int rtc_stm32_get_time(const struct device *dev, struct rtc_time *timeptr) { const struct rtc_stm32_config *cfg = dev->config; uint32_t sync_prescaler = cfg->ll_rtc_config.SynchPrescaler; uint32_t rtc_date, rtc_time, rtc_subsecond; /* Read subsecond, time and date registers */ rtc_subsecond = LL_RTC_TIME_GetSubSecond(RTC); rtc_time = LL_RTC_TIME_Get(RTC); rtc_date = LL_RTC_DATE_Get(RTC); timeptr->tm_year = TM_TO_RTC_OFFSET + __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_YEAR(rtc_date)); /* tm_mon allowed values are 0-11 */ timeptr->tm_mon = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MONTH(rtc_date)) - 1; timeptr->tm_mday = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_DAY(rtc_date)); int hw_wday = __LL_RTC_GET_WEEKDAY(rtc_date); if (hw_wday == LL_RTC_WEEKDAY_SUNDAY) { /* LL_RTC_WEEKDAY_SUNDAY = 7 but a 0 is expected in tm_wday for sunday */ timeptr->tm_wday = 0; } else { /* all other values are consistent between hardware and rtc_time structure */ timeptr->tm_wday = hw_wday; } timeptr->tm_hour = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_HOUR(rtc_time)); timeptr->tm_min = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MINUTE(rtc_time)); timeptr->tm_sec = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_SECOND(rtc_time)); uint64_t temp = ((uint64_t)(sync_prescaler - rtc_subsecond)) * 1000000000L; timeptr->tm_nsec = DIV_ROUND_CLOSEST(temp, sync_prescaler + 1); return 0; } #ifdef CONFIG_RTC_CALIBRATION static int rtc_stm32_set_calibration(const struct device *dev, int32_t calibration) { ARG_UNUSED(dev); /* Note : calibration is considered here to be ppb value to apply * on clock period (not frequency) but with an opposite sign */ if ((calibration > MAX_PPB) || (calibration < MIN_PPB)) { /* out of supported range */ return -EINVAL; } int32_t nb_pulses = PPB_TO_NB_PULSES(calibration); /* we tested calibration against supported range * so theoretically nb_pulses is also within range */ __ASSERT_NO_MSG(nb_pulses <= MAX_CALP); __ASSERT_NO_MSG(nb_pulses >= -MAX_CALM); uint32_t calp, calm; if (nb_pulses > 0) { calp = LL_RTC_CALIB_INSERTPULSE_SET; calm = MAX_CALP - nb_pulses; } else { calp = LL_RTC_CALIB_INSERTPULSE_NONE; calm = -nb_pulses; } /* wait for recalibration to be ok if a previous recalibration occurred */ if (!WAIT_FOR(LL_RTC_IsActiveFlag_RECALP(RTC) == 0, 100000, k_msleep(1))) { return -EIO; } LL_RTC_DisableWriteProtection(RTC); MODIFY_REG(RTC->CALR, RTC_CALR_CALP | RTC_CALR_CALM, calp | calm); LL_RTC_EnableWriteProtection(RTC); return 0; } static int rtc_stm32_get_calibration(const struct device *dev, int32_t *calibration) { ARG_UNUSED(dev); uint32_t calp_enabled = LL_RTC_CAL_IsPulseInserted(RTC); uint32_t calm = LL_RTC_CAL_GetMinus(RTC); int32_t nb_pulses = -((int32_t) calm); if (calp_enabled) { nb_pulses += MAX_CALP; } *calibration = NB_PULSES_TO_PPB(nb_pulses); return 0; } #endif /* CONFIG_RTC_CALIBRATION */ struct rtc_driver_api rtc_stm32_driver_api = { .set_time = rtc_stm32_set_time, .get_time = rtc_stm32_get_time, /* RTC_ALARM not supported */ /* RTC_UPDATE not supported */ #ifdef CONFIG_RTC_CALIBRATION .set_calibration = rtc_stm32_set_calibration, .get_calibration = rtc_stm32_get_calibration, #endif /* CONFIG_RTC_CALIBRATION */ }; #define RTC_STM32_DEV_CFG(n) \ static struct rtc_stm32_data rtc_data_##n = {}; \ \ DEVICE_DT_INST_DEFINE(n, &rtc_stm32_init, NULL, &rtc_data_##n, &rtc_config, POST_KERNEL, \ CONFIG_RTC_INIT_PRIORITY, &rtc_stm32_driver_api); DT_INST_FOREACH_STATUS_OKAY(RTC_STM32_DEV_CFG);