/* * Copyright (c) 2010-2014 Wind River Systems, Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Kernel initialization module * * This module contains routines that are used to initialize the kernel. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define LOG_LEVEL CONFIG_KERNEL_LOG_LEVEL #include LOG_MODULE_REGISTER(os); /* boot banner items */ #if defined(CONFIG_MULTITHREADING) && defined(CONFIG_BOOT_DELAY) \ && CONFIG_BOOT_DELAY > 0 #define BOOT_DELAY_BANNER " (delayed boot " \ STRINGIFY(CONFIG_BOOT_DELAY) "ms)" #else #define BOOT_DELAY_BANNER "" #endif /* boot time measurement items */ #ifdef CONFIG_BOOT_TIME_MEASUREMENT uint32_t __noinit z_timestamp_main; /* timestamp when main task starts */ uint32_t __noinit z_timestamp_idle; /* timestamp when CPU goes idle */ #endif /* init/main and idle threads */ K_THREAD_STACK_DEFINE(z_main_stack, CONFIG_MAIN_STACK_SIZE); struct k_thread z_main_thread; #ifdef CONFIG_MULTITHREADING struct k_thread z_idle_threads[CONFIG_MP_NUM_CPUS]; static K_THREAD_STACK_ARRAY_DEFINE(z_idle_stacks, CONFIG_MP_NUM_CPUS, CONFIG_IDLE_STACK_SIZE); #endif /* CONFIG_MULTITHREADING */ /* * storage space for the interrupt stack * * Note: This area is used as the system stack during kernel initialization, * since the kernel hasn't yet set up its own stack areas. The dual purposing * of this area is safe since interrupts are disabled until the kernel context * switches to the init thread. */ K_THREAD_STACK_ARRAY_DEFINE(z_interrupt_stacks, CONFIG_MP_NUM_CPUS, CONFIG_ISR_STACK_SIZE); #ifdef CONFIG_SYS_CLOCK_EXISTS #define initialize_timeouts() do { \ sys_dlist_init(&_timeout_q); \ } while (false) #else #define initialize_timeouts() do { } while ((0)) #endif extern void idle(void *unused1, void *unused2, void *unused3); /* LCOV_EXCL_START * * This code is called so early in the boot process that code coverage * doesn't work properly. In addition, not all arches call this code, * some like x86 do this with optimized assembly */ /** * * @brief Clear BSS * * This routine clears the BSS region, so all bytes are 0. * * @return N/A */ void z_bss_zero(void) { (void)memset(__bss_start, 0, __bss_end - __bss_start); #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay) (void)memset(&__ccm_bss_start, 0, ((uint32_t) &__ccm_bss_end - (uint32_t) &__ccm_bss_start)); #endif #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay) (void)memset(&__dtcm_bss_start, 0, ((uint32_t) &__dtcm_bss_end - (uint32_t) &__dtcm_bss_start)); #endif #ifdef CONFIG_CODE_DATA_RELOCATION extern void bss_zeroing_relocation(void); bss_zeroing_relocation(); #endif /* CONFIG_CODE_DATA_RELOCATION */ #ifdef CONFIG_COVERAGE_GCOV (void)memset(&__gcov_bss_start, 0, ((uint32_t) &__gcov_bss_end - (uint32_t) &__gcov_bss_start)); #endif } #ifdef CONFIG_STACK_CANARIES extern volatile uintptr_t __stack_chk_guard; #endif /* CONFIG_STACK_CANARIES */ #ifdef CONFIG_XIP /** * * @brief Copy the data section from ROM to RAM * * This routine copies the data section from ROM to RAM. * * @return N/A */ void z_data_copy(void) { (void)memcpy(&__data_ram_start, &__data_rom_start, __data_ram_end - __data_ram_start); #ifdef CONFIG_ARCH_HAS_RAMFUNC_SUPPORT (void)memcpy(&_ramfunc_ram_start, &_ramfunc_rom_start, (uintptr_t) &_ramfunc_ram_size); #endif /* CONFIG_ARCH_HAS_RAMFUNC_SUPPORT */ #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_ccm), okay) (void)memcpy(&__ccm_data_start, &__ccm_data_rom_start, __ccm_data_end - __ccm_data_start); #endif #if DT_NODE_HAS_STATUS(DT_CHOSEN(zephyr_dtcm), okay) (void)memcpy(&__dtcm_data_start, &__dtcm_data_rom_start, __dtcm_data_end - __dtcm_data_start); #endif #ifdef CONFIG_CODE_DATA_RELOCATION extern void data_copy_xip_relocation(void); data_copy_xip_relocation(); #endif /* CONFIG_CODE_DATA_RELOCATION */ #ifdef CONFIG_USERSPACE #ifdef CONFIG_STACK_CANARIES /* stack canary checking is active for all C functions. * __stack_chk_guard is some uninitialized value living in the * app shared memory sections. Preserve it, and don't make any * function calls to perform the memory copy. The true canary * value gets set later in z_cstart(). */ uintptr_t guard_copy = __stack_chk_guard; uint8_t *src = (uint8_t *)&_app_smem_rom_start; uint8_t *dst = (uint8_t *)&_app_smem_start; uint32_t count = _app_smem_end - _app_smem_start; guard_copy = __stack_chk_guard; while (count > 0) { *(dst++) = *(src++); count--; } __stack_chk_guard = guard_copy; #else (void)memcpy(&_app_smem_start, &_app_smem_rom_start, _app_smem_end - _app_smem_start); #endif /* CONFIG_STACK_CANARIES */ #endif /* CONFIG_USERSPACE */ } #endif /* CONFIG_XIP */ /* LCOV_EXCL_STOP */ bool z_sys_post_kernel; /** * * @brief Mainline for kernel's background thread * * This routine completes kernel initialization by invoking the remaining * init functions, then invokes application's main() routine. * * @return N/A */ static void bg_thread_main(void *unused1, void *unused2, void *unused3) { ARG_UNUSED(unused1); ARG_UNUSED(unused2); ARG_UNUSED(unused3); #if defined(CONFIG_BOOT_DELAY) && CONFIG_BOOT_DELAY > 0 static const unsigned int boot_delay = CONFIG_BOOT_DELAY; #else static const unsigned int boot_delay; #endif z_sys_post_kernel = true; z_sys_init_run_level(_SYS_INIT_LEVEL_POST_KERNEL); #if CONFIG_STACK_POINTER_RANDOM z_stack_adjust_initialized = 1; #endif if (boot_delay > 0 && IS_ENABLED(CONFIG_MULTITHREADING)) { printk("***** delaying boot " STRINGIFY(CONFIG_BOOT_DELAY) "ms (per build configuration) *****\n"); k_busy_wait(CONFIG_BOOT_DELAY * USEC_PER_MSEC); } #if defined(CONFIG_BOOT_BANNER) #ifdef BUILD_VERSION printk("*** Booting Zephyr OS build %s %s ***\n", STRINGIFY(BUILD_VERSION), BOOT_DELAY_BANNER); #else printk("*** Booting Zephyr OS version %s %s ***\n", KERNEL_VERSION_STRING, BOOT_DELAY_BANNER); #endif #endif #ifdef CONFIG_CPLUSPLUS /* Process the .ctors and .init_array sections */ extern void __do_global_ctors_aux(void); extern void __do_init_array_aux(void); __do_global_ctors_aux(); __do_init_array_aux(); #endif /* Final init level before app starts */ z_sys_init_run_level(_SYS_INIT_LEVEL_APPLICATION); z_init_static_threads(); #ifdef CONFIG_SMP z_smp_init(); z_sys_init_run_level(_SYS_INIT_LEVEL_SMP); #endif #ifdef CONFIG_BOOT_TIME_MEASUREMENT z_timestamp_main = k_cycle_get_32(); #endif extern void main(void); main(); /* Mark nonessenrial since main() has no more work to do */ z_main_thread.base.user_options &= ~K_ESSENTIAL; #ifdef CONFIG_COVERAGE_DUMP /* Dump coverage data once the main() has exited. */ gcov_coverage_dump(); #endif } /* LCOV_EXCL_LINE ... because we just dumped final coverage data */ /* LCOV_EXCL_START */ void __weak main(void) { /* NOP default main() if the application does not provide one. */ arch_nop(); } /* LCOV_EXCL_STOP */ #if defined(CONFIG_MULTITHREADING) static void init_idle_thread(int i) { struct k_thread *thread = &z_idle_threads[i]; k_thread_stack_t *stack = z_idle_stacks[i]; #ifdef CONFIG_THREAD_NAME char tname[8]; snprintk(tname, 8, "idle %02d", i); #else char *tname = NULL; #endif /* CONFIG_THREAD_NAME */ z_setup_new_thread(thread, stack, CONFIG_IDLE_STACK_SIZE, idle, NULL, NULL, NULL, K_LOWEST_THREAD_PRIO, K_ESSENTIAL, tname); z_mark_thread_as_started(thread); #ifdef CONFIG_SMP thread->base.is_idle = 1U; #endif } #endif /* CONFIG_MULTITHREADING */ /** * * @brief Initializes kernel data structures * * This routine initializes various kernel data structures, including * the init and idle threads and any architecture-specific initialization. * * Note that all fields of "_kernel" are set to zero on entry, which may * be all the initialization many of them require. * * @return N/A */ #ifdef CONFIG_MULTITHREADING static void prepare_multithreading(void) { /* _kernel.ready_q is all zeroes */ z_sched_init(); #ifndef CONFIG_SMP /* * prime the cache with the main thread since: * * - the cache can never be NULL * - the main thread will be the one to run first * - no other thread is initialized yet and thus their priority fields * contain garbage, which would prevent the cache loading algorithm * to work as intended */ _kernel.ready_q.cache = &z_main_thread; #endif z_setup_new_thread(&z_main_thread, z_main_stack, CONFIG_MAIN_STACK_SIZE, bg_thread_main, NULL, NULL, NULL, CONFIG_MAIN_THREAD_PRIORITY, K_ESSENTIAL, "main"); z_mark_thread_as_started(&z_main_thread); z_ready_thread(&z_main_thread); for (int i = 0; i < CONFIG_MP_NUM_CPUS; i++) { init_idle_thread(i); _kernel.cpus[i].idle_thread = &z_idle_threads[i]; _kernel.cpus[i].id = i; _kernel.cpus[i].irq_stack = (Z_THREAD_STACK_BUFFER(z_interrupt_stacks[i]) + K_THREAD_STACK_SIZEOF(z_interrupt_stacks[i])); } initialize_timeouts(); } static FUNC_NORETURN void switch_to_main_thread(void) { #ifdef CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN arch_switch_to_main_thread(&z_main_thread, z_main_stack, K_THREAD_STACK_SIZEOF(z_main_stack), bg_thread_main); #else /* * Context switch to main task (entry function is _main()): the * current fake thread is not on a wait queue or ready queue, so it * will never be rescheduled in. */ z_swap_unlocked(); #endif CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ } #endif /* CONFIG_MULTITHREADING */ #if defined(CONFIG_ENTROPY_HAS_DRIVER) || defined(CONFIG_TEST_RANDOM_GENERATOR) void z_early_boot_rand_get(uint8_t *buf, size_t length) { int n = sizeof(uint32_t); #ifdef CONFIG_ENTROPY_HAS_DRIVER struct device *entropy = device_get_binding(DT_CHOSEN_ZEPHYR_ENTROPY_LABEL); int rc; if (entropy == NULL) { goto sys_rand_fallback; } /* Try to see if driver provides an ISR-specific API */ rc = entropy_get_entropy_isr(entropy, buf, length, ENTROPY_BUSYWAIT); if (rc == -ENOTSUP) { /* Driver does not provide an ISR-specific API, assume it can * be called from ISR context */ rc = entropy_get_entropy(entropy, buf, length); } if (rc >= 0) { return; } /* Fall through to fallback */ sys_rand_fallback: #endif /* FIXME: this assumes sys_rand32_get() won't use any synchronization * primitive, like semaphores or mutexes. It's too early in the boot * process to use any of them. Ideally, only the path where entropy * devices are available should be built, this is only a fallback for * those devices without a HWRNG entropy driver. */ while (length > 0) { uint32_t rndbits; uint8_t *p_rndbits = (uint8_t *)&rndbits; rndbits = sys_rand32_get(); if (length < sizeof(uint32_t)) { n = length; } for (int i = 0; i < n; i++) { *buf = *p_rndbits; buf++; p_rndbits++; } length -= n; } } /* defined(CONFIG_ENTROPY_HAS_DRIVER) || defined(CONFIG_TEST_RANDOM_GENERATOR) */ #endif /** * * @brief Initialize kernel * * This routine is invoked when the system is ready to run C code. The * processor must be running in 32-bit mode, and the BSS must have been * cleared/zeroed. * * @return Does not return */ FUNC_NORETURN void z_cstart(void) { /* gcov hook needed to get the coverage report.*/ gcov_static_init(); LOG_CORE_INIT(); /* perform any architecture-specific initialization */ arch_kernel_init(); #if defined(CONFIG_MULTITHREADING) /* Note: The z_ready_thread() call in prepare_multithreading() requires * a dummy thread even if CONFIG_ARCH_HAS_CUSTOM_SWAP_TO_MAIN=y */ struct k_thread dummy_thread; z_dummy_thread_init(&dummy_thread); #endif /* perform basic hardware initialization */ z_sys_init_run_level(_SYS_INIT_LEVEL_PRE_KERNEL_1); z_sys_init_run_level(_SYS_INIT_LEVEL_PRE_KERNEL_2); #ifdef CONFIG_STACK_CANARIES uintptr_t stack_guard; z_early_boot_rand_get((uint8_t *)&stack_guard, sizeof(stack_guard)); __stack_chk_guard = stack_guard; __stack_chk_guard <<= 8; #endif /* CONFIG_STACK_CANARIES */ #ifdef CONFIG_MULTITHREADING prepare_multithreading(); switch_to_main_thread(); #else bg_thread_main(NULL, NULL, NULL); /* LCOV_EXCL_START * We've already dumped coverage data at this point. */ irq_lock(); while (true) { } /* LCOV_EXCL_STOP */ #endif /* * Compiler can't tell that the above routines won't return and issues * a warning unless we explicitly tell it that control never gets this * far. */ CODE_UNREACHABLE; /* LCOV_EXCL_LINE */ }