/* * Copyright (c) 2016-2017 Nordic Semiconductor ASA * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #define RTC NRF_RTC1 #define RTC_IRQn NRFX_IRQ_NUMBER_GET(RTC) #define COUNTER_SPAN BIT(24) #define COUNTER_MAX (COUNTER_SPAN - 1U) #define COUNTER_HALF_SPAN (COUNTER_SPAN / 2U) #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK) #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK) static struct k_spinlock lock; static uint32_t last_count; static uint32_t counter_sub(uint32_t a, uint32_t b) { return (a - b) & COUNTER_MAX; } static void set_comparator(uint32_t cyc) { nrf_rtc_cc_set(RTC, 0, cyc & COUNTER_MAX); } static uint32_t get_comparator(void) { return nrf_rtc_cc_get(RTC, 0); } static void event_clear(void) { nrf_rtc_event_clear(RTC, NRF_RTC_EVENT_COMPARE_0); } static void event_enable(void) { nrf_rtc_event_enable(RTC, NRF_RTC_INT_COMPARE0_MASK); } static void int_disable(void) { nrf_rtc_int_disable(RTC, NRF_RTC_INT_COMPARE0_MASK); } static void int_enable(void) { nrf_rtc_int_enable(RTC, NRF_RTC_INT_COMPARE0_MASK); } static uint32_t counter(void) { return nrf_rtc_counter_get(RTC); } /* Function ensures that previous CC value will not set event */ static void prevent_false_prev_evt(void) { uint32_t now = counter(); uint32_t prev_val; /* First take care of a risk of an event coming from CC being set to the * next cycle. * Reconfigure CC to the future. If CC was set to next cycle we need to * wait for up to 15 us (half of 32 kHz interval) and clean a potential * event. After that there is no risk of unwanted event. */ prev_val = get_comparator(); event_clear(); set_comparator(now); event_enable(); if (counter_sub(prev_val, now) == 1) { k_busy_wait(15); event_clear(); } /* Clear interrupt that may have fired as we were setting the * comparator. */ NVIC_ClearPendingIRQ(RTC_IRQn); } /* If alarm is next RTC cycle from now, function attempts to adjust. If * counter progresses during that time it means that 1 cycle elapsed and * interrupt is set pending. */ static void handle_next_cycle_case(uint32_t t) { set_comparator(t + 2); while (t != counter()) { /* Already expired, time elapsed but event might not be * generated. Trigger interrupt. */ t = counter(); set_comparator(t + 2); } } /* Function safely sets absolute alarm. It assumes that provided value is * less than MAX_CYCLES from now. It detects late setting and also handles * +1 cycle case. */ static void set_absolute_alarm(uint32_t abs_val) { uint32_t diff; uint32_t t = counter(); diff = counter_sub(abs_val, t); if (diff == 1) { handle_next_cycle_case(t); return; } set_comparator(abs_val); t = counter(); /* A little trick, subtract 2 to force now and now + 1 case fall into * negative (> MAX_CYCLES). Diff 0 means two cycles from now. */ diff = counter_sub(abs_val - 2, t); if (diff > MAX_CYCLES) { /* Already expired, set for subsequent cycle. */ /* It is possible that setting CC was interrupted and CC might * be set to COUNTER+1 value which will not generate an event. * In that case, special handling is performed (attempt to set * CC to COUNTER+2). */ handle_next_cycle_case(t); } } /* Sets relative alarm from any context. Function is lockless. It only * blocks RTC interrupt. */ static void set_protected_absolute_alarm(uint32_t cycles) { int_disable(); prevent_false_prev_evt(); set_absolute_alarm(cycles); int_enable(); } /* Note: this function has public linkage, and MUST have this * particular name. The platform architecture itself doesn't care, * but there is a test (tests/arch/arm_irq_vector_table) that needs * to find it to it can set it in a custom vector table. Should * probably better abstract that at some point (e.g. query and reset * it by pointer at runtime, maybe?) so we don't have this leaky * symbol. */ void rtc_nrf_isr(void *arg) { ARG_UNUSED(arg); event_clear(); uint32_t t = get_comparator(); uint32_t dticks = counter_sub(t, last_count) / CYC_PER_TICK; last_count += dticks * CYC_PER_TICK; if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { /* protection is not needed because we are in the RTC interrupt * so it won't get preempted by the interrupt. */ set_absolute_alarm(last_count + CYC_PER_TICK); } z_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : (dticks > 0)); } int z_clock_driver_init(struct device *device) { ARG_UNUSED(device); /* TODO: replace with counter driver to access RTC */ nrf_rtc_prescaler_set(RTC, 0); event_clear(); NVIC_ClearPendingIRQ(RTC_IRQn); int_enable(); IRQ_CONNECT(RTC_IRQn, 1, rtc_nrf_isr, 0, 0); irq_enable(RTC_IRQn); nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_CLEAR); nrf_rtc_task_trigger(RTC, NRF_RTC_TASK_START); if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { set_comparator(counter() + CYC_PER_TICK); } z_nrf_clock_control_lf_on(NRF_LFCLK_START_MODE_NOWAIT); return 0; } void z_clock_set_timeout(int32_t ticks, bool idle) { ARG_UNUSED(idle); uint32_t cyc; if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return; } ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks; ticks = MAX(MIN(ticks - 1, (int32_t)MAX_TICKS), 0); uint32_t unannounced = counter_sub(counter(), last_count); /* If we haven't announced for more than half the 24-bit wrap * duration, then force an announce to avoid loss of a wrap * event. This can happen if new timeouts keep being set * before the existing one triggers the interrupt. */ if (unannounced >= COUNTER_HALF_SPAN) { ticks = 0; } /* Get the cycles from last_count to the tick boundary after * the requested ticks have passed starting now. */ cyc = ticks * CYC_PER_TICK + 1 + unannounced; cyc += (CYC_PER_TICK - 1); cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK; /* Due to elapsed time the calculation above might produce a * duration that laps the counter. Don't let it. */ if (cyc > MAX_CYCLES) { cyc = MAX_CYCLES; } cyc += last_count; set_protected_absolute_alarm(cyc); } uint32_t z_clock_elapsed(void) { if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) { return 0; } k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ret = counter_sub(counter(), last_count) / CYC_PER_TICK; k_spin_unlock(&lock, key); return ret; } uint32_t z_timer_cycle_get_32(void) { k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ret = counter_sub(counter(), last_count) + last_count; k_spin_unlock(&lock, key); return ret; }