/* * Copyright (c) 2014-2015 Wind River Systems, Inc. * Copyright (c) 2018 Synopsys Inc, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include /* * note: This implementation assumes Timer0 is present. Be sure * to build the ARC CPU with Timer0. * * If secureshield is present and secure firmware is configured, * use secure Timer 0 */ #ifdef CONFIG_ARC_SECURE_FIRMWARE #undef _ARC_V2_TMR0_COUNT #undef _ARC_V2_TMR0_CONTROL #undef _ARC_V2_TMR0_LIMIT #undef IRQ_TIMER0 #define _ARC_V2_TMR0_COUNT _ARC_V2_S_TMR0_COUNT #define _ARC_V2_TMR0_CONTROL _ARC_V2_S_TMR0_CONTROL #define _ARC_V2_TMR0_LIMIT _ARC_V2_S_TMR0_LIMIT #define IRQ_TIMER0 IRQ_SEC_TIMER0 #endif #define _ARC_V2_TMR_CTRL_IE 0x1 /* interrupt enable */ #define _ARC_V2_TMR_CTRL_NH 0x2 /* count only while not halted */ #define _ARC_V2_TMR_CTRL_W 0x4 /* watchdog mode enable */ #define _ARC_V2_TMR_CTRL_IP 0x8 /* interrupt pending flag */ /* Minimum cycles in the future to try to program. */ #define MIN_DELAY 1024 /* arc timer has 32 bit, here use 31 bit to avoid the possible * overflow,e.g, 0xffffffff + any value will cause overflow */ #define COUNTER_MAX 0x7fffffff #define TIMER_STOPPED 0x0 #define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \ / CONFIG_SYS_CLOCK_TICKS_PER_SEC) #define MAX_TICKS ((COUNTER_MAX / CYC_PER_TICK) - 1) #define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK) #define TICKLESS (IS_ENABLED(CONFIG_TICKLESS_KERNEL)) #define SMP_TIMER_DRIVER (CONFIG_SMP && CONFIG_MP_NUM_CPUS > 1) static struct k_spinlock lock; #if SMP_TIMER_DRIVER volatile static uint64_t last_time; volatile static uint64_t start_time; #else static uint32_t last_load; /* * This local variable holds the amount of timer cycles elapsed * and it is updated in z_timer_int_handler and z_clock_set_timeout(). * * Note: * At an arbitrary point in time the "current" value of the * HW timer is calculated as: * * t = cycle_counter + elapsed(); */ static uint32_t cycle_count; /* * This local variable holds the amount of elapsed HW cycles * that have been announced to the kernel. */ static uint32_t announced_cycles; /* * This local variable holds the amount of elapsed HW cycles due to * timer wraps ('overflows') and is used in the calculation * in elapsed() function, as well as in the updates to cycle_count. * * Note: * Each time cycle_count is updated with the value from overflow_cycles, * the overflow_cycles must be reset to zero. */ static volatile uint32_t overflow_cycles; #endif /** * * @brief Get contents of Timer0 count register * * @return Current Timer0 count */ static ALWAYS_INLINE uint32_t timer0_count_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_COUNT); } /** * * @brief Set Timer0 count register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_count_register_set(uint32_t value) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_COUNT, value); } /** * * @brief Get contents of Timer0 control register * * @return N/A */ static ALWAYS_INLINE uint32_t timer0_control_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_CONTROL); } /** * * @brief Set Timer0 control register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_control_register_set(uint32_t value) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_CONTROL, value); } /** * * @brief Get contents of Timer0 limit register * * @return N/A */ static ALWAYS_INLINE uint32_t timer0_limit_register_get(void) { return z_arc_v2_aux_reg_read(_ARC_V2_TMR0_LIMIT); } /** * * @brief Set Timer0 limit register to the specified value * * @return N/A */ static ALWAYS_INLINE void timer0_limit_register_set(uint32_t count) { z_arc_v2_aux_reg_write(_ARC_V2_TMR0_LIMIT, count); } #if !SMP_TIMER_DRIVER /* This internal function calculates the amount of HW cycles that have * elapsed since the last time the absolute HW cycles counter has been * updated. 'cycle_count' may be updated either by the ISR, or * in z_clock_set_timeout(). * * Additionally, the function updates the 'overflow_cycles' counter, that * holds the amount of elapsed HW cycles due to (possibly) multiple * timer wraps (overflows). * * Prerequisites: * - reprogramming of LIMIT must be clearing the COUNT * - ISR must be clearing the 'overflow_cycles' counter. * - no more than one counter-wrap has occurred between * - the timer reset or the last time the function was called * - and until the current call of the function is completed. * - the function is invoked with interrupts disabled. */ static uint32_t elapsed(void) { uint32_t val, ctrl; do { val = timer0_count_register_get(); ctrl = timer0_control_register_get(); } while (timer0_count_register_get() < val); if (ctrl & _ARC_V2_TMR_CTRL_IP) { overflow_cycles += last_load; /* clear the IP bit of the control register */ timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); /* use sw triggered irq to remember the timer irq request * which may be cleared by the above operation. when elapsed () * is called in z_timer_int_handler, no need to do this. */ if (!z_arc_v2_irq_unit_is_in_isr() || z_arc_v2_aux_reg_read(_ARC_V2_ICAUSE) != IRQ_TIMER0) { z_arc_v2_aux_reg_write(_ARC_V2_AUX_IRQ_HINT, IRQ_TIMER0); } } return val + overflow_cycles; } #endif /** * * @brief System clock periodic tick handler * * This routine handles the system clock tick interrupt. It always * announces one tick when TICKLESS is not enabled, or multiple ticks * when TICKLESS is enabled. * * @return N/A */ static void timer_int_handler(void *unused) { ARG_UNUSED(unused); uint32_t dticks; #if defined(CONFIG_SMP) && CONFIG_MP_NUM_CPUS > 1 uint64_t curr_time; k_spinlock_key_t key; /* clear the IP bit of the control register */ timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); key = k_spin_lock(&lock); /* gfrc is the wall clock */ curr_time = z_arc_connect_gfrc_read(); dticks = (curr_time - last_time) / CYC_PER_TICK; /* last_time should be aligned to ticks */ last_time += dticks * CYC_PER_TICK; k_spin_unlock(&lock, key); z_clock_announce(dticks); #else /* timer_int_handler may be triggered by timer irq or * software helper irq */ /* irq with higher priority may call z_clock_set_timeout * so need a lock here */ uint32_t key; key = arch_irq_lock(); elapsed(); cycle_count += overflow_cycles; overflow_cycles = 0; arch_irq_unlock(key); dticks = (cycle_count - announced_cycles) / CYC_PER_TICK; announced_cycles += dticks * CYC_PER_TICK; z_clock_announce(TICKLESS ? dticks : 1); #endif } /** * * @brief Initialize and enable the system clock * * This routine is used to program the ARCv2 timer to deliver interrupts at the * rate specified via the CYC_PER_TICK. * * @return 0 */ int z_clock_driver_init(struct device *device) { ARG_UNUSED(device); /* ensure that the timer will not generate interrupts */ timer0_control_register_set(0); #if SMP_TIMER_DRIVER IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, timer_int_handler, NULL, 0); timer0_limit_register_set(CYC_PER_TICK - 1); last_time = z_arc_connect_gfrc_read(); start_time = last_time; #else last_load = CYC_PER_TICK; overflow_cycles = 0; announced_cycles = 0; IRQ_CONNECT(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, timer_int_handler, NULL, 0); timer0_limit_register_set(last_load - 1); #ifdef CONFIG_BOOT_TIME_MEASUREMENT cycle_count = timer0_count_register_get(); #endif #endif timer0_count_register_set(0); timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); /* everything has been configured: safe to enable the interrupt */ irq_enable(IRQ_TIMER0); return 0; } void z_clock_set_timeout(int32_t ticks, bool idle) { /* If the kernel allows us to miss tick announcements in idle, * then shut off the counter. (Note: we can assume if idle==true * that interrupts are already disabled) */ #if SMP_TIMER_DRIVER /* as 64-bits GFRC is used as wall clock, it's ok to ignore idle * systick will not be missed. * However for single core using 32-bits arc timer, idle cannot * be ignored, as 32-bits timer will overflow in a not-long time. */ if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && ticks == K_TICKS_FOREVER) { timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); return; } #if defined(CONFIG_TICKLESS_KERNEL) uint32_t delay; uint32_t key; ticks = MIN(MAX_TICKS, ticks); /* Desired delay in the future * use MIN_DEALY here can trigger the timer * irq more soon, no need to go to CYC_PER_TICK * later. */ delay = MAX(ticks * CYC_PER_TICK, MIN_DELAY); key = arch_irq_lock(); timer0_limit_register_set(delay - 1); timer0_count_register_set(0); timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); arch_irq_unlock(key); #endif #else if (IS_ENABLED(CONFIG_TICKLESS_IDLE) && idle && ticks == K_TICKS_FOREVER) { timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); last_load = TIMER_STOPPED; return; } #if defined(CONFIG_TICKLESS_KERNEL) uint32_t delay; uint32_t unannounced; ticks = MIN(MAX_TICKS, (uint32_t)(MAX((int32_t)(ticks - 1), 0))); k_spinlock_key_t key = k_spin_lock(&lock); cycle_count += elapsed(); /* clear counter early to avoid cycle loss as few as possible, * between cycle_count and clearing 0, few cycles are possible * to loss */ timer0_count_register_set(0); overflow_cycles = 0U; /* normal case */ unannounced = cycle_count - announced_cycles; if ((int32_t)unannounced < 0) { /* We haven't announced for more than half the 32-bit * wrap duration, because new timeouts keep being set * before the existing one fires. Force an announce * to avoid loss of a wrap event, making sure the * delay is at least the minimum delay possible. */ last_load = MIN_DELAY; } else { /* Desired delay in the future */ delay = ticks * CYC_PER_TICK; /* Round delay up to next tick boundary */ delay += unannounced; delay = ((delay + CYC_PER_TICK - 1) / CYC_PER_TICK) * CYC_PER_TICK; delay -= unannounced; delay = MAX(delay, MIN_DELAY); last_load = MIN(delay, MAX_CYCLES); } timer0_limit_register_set(last_load - 1); timer0_control_register_set(_ARC_V2_TMR_CTRL_NH | _ARC_V2_TMR_CTRL_IE); k_spin_unlock(&lock, key); #endif #endif } uint32_t z_clock_elapsed(void) { if (!TICKLESS) { return 0; } uint32_t cyc; k_spinlock_key_t key = k_spin_lock(&lock); #if SMP_TIMER_DRIVER cyc = (z_arc_connect_gfrc_read() - last_time); #else cyc = elapsed() + cycle_count - announced_cycles; #endif k_spin_unlock(&lock, key); return cyc / CYC_PER_TICK; } uint32_t z_timer_cycle_get_32(void) { #if SMP_TIMER_DRIVER return z_arc_connect_gfrc_read() - start_time; #else k_spinlock_key_t key = k_spin_lock(&lock); uint32_t ret = elapsed() + cycle_count; k_spin_unlock(&lock, key); return ret; #endif } #if SMP_TIMER_DRIVER void smp_timer_init(void) { /* set the initial status of timer0 of each slave core */ timer0_control_register_set(0); timer0_count_register_set(0); timer0_limit_register_set(0); z_irq_priority_set(IRQ_TIMER0, CONFIG_ARCV2_TIMER_IRQ_PRIORITY, 0); irq_enable(IRQ_TIMER0); } #endif