/* ns16550.c - NS16550D serial driver */ #define DT_DRV_COMPAT ns16550 /* * Copyright (c) 2010, 2012-2015 Wind River Systems, Inc. * Copyright (c) 2020 Intel Corp. * * SPDX-License-Identifier: Apache-2.0 */ /** * @brief NS16550 Serial Driver * * This is the driver for the Intel NS16550 UART Chip used on the PC 386. * It uses the SCCs in asynchronous mode only. * * Before individual UART port can be used, uart_ns16550_port_init() has to be * called to setup the port. * * - the following macro for the number of bytes between register addresses: * * UART_REG_ADDR_INTERVAL */ #include #include #include #include #include #include #include #include #include #include #include #include "uart_ns16550.h" /* * If PCP is set for any of the ports, enable support. * Ditto for DLF and PCI(e). */ #if DT_INST_NODE_HAS_PROP(0, pcp) || \ DT_INST_NODE_HAS_PROP(1, pcp) || \ DT_INST_NODE_HAS_PROP(2, pcp) || \ DT_INST_NODE_HAS_PROP(3, pcp) #define UART_NS16550_PCP_ENABLED #endif #if DT_INST_NODE_HAS_PROP(0, dlf) || \ DT_INST_NODE_HAS_PROP(1, dlf) || \ DT_INST_NODE_HAS_PROP(2, dlf) || \ DT_INST_NODE_HAS_PROP(3, dlf) #define UART_NS16550_DLF_ENABLED #endif #if DT_INST_PROP(0, pcie) || \ DT_INST_PROP(1, pcie) || \ DT_INST_PROP(2, pcie) || \ DT_INST_PROP(3, pcie) BUILD_ASSERT(IS_ENABLED(CONFIG_PCIE), "NS16550(s) in DT need CONFIG_PCIE"); #define UART_NS16550_PCIE_ENABLED #include #endif /* register definitions */ #define REG_THR 0x00 /* Transmitter holding reg. */ #define REG_RDR 0x00 /* Receiver data reg. */ #define REG_BRDL 0x00 /* Baud rate divisor (LSB) */ #define REG_BRDH 0x01 /* Baud rate divisor (MSB) */ #define REG_IER 0x01 /* Interrupt enable reg. */ #define REG_IIR 0x02 /* Interrupt ID reg. */ #define REG_FCR 0x02 /* FIFO control reg. */ #define REG_LCR 0x03 /* Line control reg. */ #define REG_MDC 0x04 /* Modem control reg. */ #define REG_LSR 0x05 /* Line status reg. */ #define REG_MSR 0x06 /* Modem status reg. */ #define REG_DLF 0xC0 /* Divisor Latch Fraction */ #define REG_PCP 0x200 /* PRV_CLOCK_PARAMS (Apollo Lake) */ /* equates for interrupt enable register */ #define IER_RXRDY 0x01 /* receiver data ready */ #define IER_TBE 0x02 /* transmit bit enable */ #define IER_LSR 0x04 /* line status interrupts */ #define IER_MSI 0x08 /* modem status interrupts */ /* equates for interrupt identification register */ #define IIR_MSTAT 0x00 /* modem status interrupt */ #define IIR_NIP 0x01 /* no interrupt pending */ #define IIR_THRE 0x02 /* transmit holding register empty interrupt */ #define IIR_RBRF 0x04 /* receiver buffer register full interrupt */ #define IIR_LS 0x06 /* receiver line status interrupt */ #define IIR_MASK 0x07 /* interrupt id bits mask */ #define IIR_ID 0x06 /* interrupt ID mask without NIP */ /* equates for FIFO control register */ #define FCR_FIFO 0x01 /* enable XMIT and RCVR FIFO */ #define FCR_RCVRCLR 0x02 /* clear RCVR FIFO */ #define FCR_XMITCLR 0x04 /* clear XMIT FIFO */ /* equates for Apollo Lake clock control register (PRV_CLOCK_PARAMS) */ #define PCP_UPDATE 0x80000000 /* update clock */ #define PCP_EN 0x00000001 /* enable clock output */ /* * Per PC16550D (Literature Number: SNLS378B): * * RXRDY, Mode 0: When in the 16450 Mode (FCR0 = 0) or in * the FIFO Mode (FCR0 = 1, FCR3 = 0) and there is at least 1 * character in the RCVR FIFO or RCVR holding register, the * RXRDY pin (29) will be low active. Once it is activated the * RXRDY pin will go inactive when there are no more charac- * ters in the FIFO or holding register. * * RXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when the * FCR3 = 1 and the trigger level or the timeout has been * reached, the RXRDY pin will go low active. Once it is acti- * vated it will go inactive when there are no more characters * in the FIFO or holding register. * * TXRDY, Mode 0: In the 16450 Mode (FCR0 = 0) or in the * FIFO Mode (FCR0 = 1, FCR3 = 0) and there are no charac- * ters in the XMIT FIFO or XMIT holding register, the TXRDY * pin (24) will be low active. Once it is activated the TXRDY * pin will go inactive after the first character is loaded into the * XMIT FIFO or holding register. * * TXRDY, Mode 1: In the FIFO Mode (FCR0 = 1) when * FCR3 = 1 and there are no characters in the XMIT FIFO, the * TXRDY pin will go low active. This pin will become inactive * when the XMIT FIFO is completely full. */ #define FCR_MODE0 0x00 /* set receiver in mode 0 */ #define FCR_MODE1 0x08 /* set receiver in mode 1 */ /* RCVR FIFO interrupt levels: trigger interrupt with this bytes in FIFO */ #define FCR_FIFO_1 0x00 /* 1 byte in RCVR FIFO */ #define FCR_FIFO_4 0x40 /* 4 bytes in RCVR FIFO */ #define FCR_FIFO_8 0x80 /* 8 bytes in RCVR FIFO */ #define FCR_FIFO_14 0xC0 /* 14 bytes in RCVR FIFO */ /* * UART NS16750 supports 64 bytes FIFO, which can be enabled * via the FCR register */ #define FCR_FIFO_64 0x20 /* Enable 64 bytes FIFO */ /* constants for line control register */ #define LCR_CS5 0x00 /* 5 bits data size */ #define LCR_CS6 0x01 /* 6 bits data size */ #define LCR_CS7 0x02 /* 7 bits data size */ #define LCR_CS8 0x03 /* 8 bits data size */ #define LCR_2_STB 0x04 /* 2 stop bits */ #define LCR_1_STB 0x00 /* 1 stop bit */ #define LCR_PEN 0x08 /* parity enable */ #define LCR_PDIS 0x00 /* parity disable */ #define LCR_EPS 0x10 /* even parity select */ #define LCR_SP 0x20 /* stick parity select */ #define LCR_SBRK 0x40 /* break control bit */ #define LCR_DLAB 0x80 /* divisor latch access enable */ /* constants for the modem control register */ #define MCR_DTR 0x01 /* dtr output */ #define MCR_RTS 0x02 /* rts output */ #define MCR_OUT1 0x04 /* output #1 */ #define MCR_OUT2 0x08 /* output #2 */ #define MCR_LOOP 0x10 /* loop back */ #define MCR_AFCE 0x20 /* auto flow control enable */ /* constants for line status register */ #define LSR_RXRDY 0x01 /* receiver data available */ #define LSR_OE 0x02 /* overrun error */ #define LSR_PE 0x04 /* parity error */ #define LSR_FE 0x08 /* framing error */ #define LSR_BI 0x10 /* break interrupt */ #define LSR_EOB_MASK 0x1E /* Error or Break mask */ #define LSR_THRE 0x20 /* transmit holding register empty */ #define LSR_TEMT 0x40 /* transmitter empty */ /* constants for modem status register */ #define MSR_DCTS 0x01 /* cts change */ #define MSR_DDSR 0x02 /* dsr change */ #define MSR_DRI 0x04 /* ring change */ #define MSR_DDCD 0x08 /* data carrier change */ #define MSR_CTS 0x10 /* complement of cts */ #define MSR_DSR 0x20 /* complement of dsr */ #define MSR_RI 0x40 /* complement of ring signal */ #define MSR_DCD 0x80 /* complement of dcd */ /* convenience defines */ #define DEV_CFG(dev) \ ((const struct uart_ns16550_device_config * const) \ (dev)->config_info) #define DEV_DATA(dev) \ ((struct uart_ns16550_dev_data_t *)(dev)->driver_data) #define THR(dev) (get_port(dev) + REG_THR * UART_REG_ADDR_INTERVAL) #define RDR(dev) (get_port(dev) + REG_RDR * UART_REG_ADDR_INTERVAL) #define BRDL(dev) \ (get_port(dev) + REG_BRDL * UART_REG_ADDR_INTERVAL) #define BRDH(dev) \ (get_port(dev) + REG_BRDH * UART_REG_ADDR_INTERVAL) #define IER(dev) (get_port(dev) + REG_IER * UART_REG_ADDR_INTERVAL) #define IIR(dev) (get_port(dev) + REG_IIR * UART_REG_ADDR_INTERVAL) #define FCR(dev) (get_port(dev) + REG_FCR * UART_REG_ADDR_INTERVAL) #define LCR(dev) (get_port(dev) + REG_LCR * UART_REG_ADDR_INTERVAL) #define MDC(dev) (get_port(dev) + REG_MDC * UART_REG_ADDR_INTERVAL) #define LSR(dev) (get_port(dev) + REG_LSR * UART_REG_ADDR_INTERVAL) #define MSR(dev) (get_port(dev) + REG_MSR * UART_REG_ADDR_INTERVAL) #define DLF(dev) (get_port(dev) + REG_DLF) #define PCP(dev) (get_port(dev) + REG_PCP) #define IIRC(dev) (DEV_DATA(dev)->iir_cache) #if DT_INST_NODE_HAS_PROP(0, reg_shift) #define UART_REG_ADDR_INTERVAL (1<port; #endif } static void set_baud_rate(struct device *dev, uint32_t baud_rate) { const struct uart_ns16550_device_config * const dev_cfg = DEV_CFG(dev); struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev); uint32_t divisor; /* baud rate divisor */ uint8_t lcr_cache; if ((baud_rate != 0U) && (dev_cfg->sys_clk_freq != 0U)) { /* * calculate baud rate divisor. a variant of * (uint32_t)(dev_cfg->sys_clk_freq / (16.0 * baud_rate) + 0.5) */ divisor = ((dev_cfg->sys_clk_freq + (baud_rate << 3)) / baud_rate) >> 4; /* set the DLAB to access the baud rate divisor registers */ lcr_cache = INBYTE(LCR(dev)); OUTBYTE(LCR(dev), LCR_DLAB | lcr_cache); OUTBYTE(BRDL(dev), (unsigned char)(divisor & 0xff)); OUTBYTE(BRDH(dev), (unsigned char)((divisor >> 8) & 0xff)); /* restore the DLAB to access the baud rate divisor registers */ OUTBYTE(LCR(dev), lcr_cache); dev_data->uart_config.baudrate = baud_rate; } } static int uart_ns16550_configure(struct device *dev, const struct uart_config *cfg) { struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev); const struct uart_ns16550_device_config * const dev_cfg = DEV_CFG(dev); uint8_t mdc = 0U; /* temp for return value if error occurs in this locked region */ int ret = 0; k_spinlock_key_t key = k_spin_lock(&dev_data->lock); ARG_UNUSED(dev_data); ARG_UNUSED(dev_cfg); #ifndef UART_NS16550_ACCESS_IOPORT #ifdef UART_NS16550_PCIE_ENABLED if (dev_cfg->pcie) { uintptr_t phys; if (!pcie_probe(dev_cfg->pcie_bdf, dev_cfg->pcie_id)) { ret = -EINVAL; goto out; } phys = pcie_get_mbar(dev_cfg->pcie_bdf, 0); pcie_set_cmd(dev_cfg->pcie_bdf, PCIE_CONF_CMDSTAT_MEM, true); device_map(DEVICE_MMIO_RAM_PTR(dev), phys, 0x1000, K_MEM_CACHE_NONE); } else #endif /* UART_NS16550_PCIE_ENABLED */ { /* Map directly from DTS */ DEVICE_MMIO_MAP(dev, K_MEM_CACHE_NONE); } #endif /* UART_NS15660_ACCESS_IOPORT */ #ifdef CONFIG_UART_INTERRUPT_DRIVEN dev_data->iir_cache = 0U; #endif #ifdef UART_NS16550_DLF_ENABLED OUTBYTE(DLF(dev), dev_data->dlf); #endif #ifdef UART_NS16550_PCP_ENABLED uint32_t pcp = dev_cfg->pcp; if (pcp) { pcp |= PCP_EN; OUTWORD(PCP(dev), pcp & ~PCP_UPDATE); OUTWORD(PCP(dev), pcp | PCP_UPDATE); } #endif set_baud_rate(dev, cfg->baudrate); /* Local structure to hold temporary values to pass to OUTBYTE() */ struct uart_config uart_cfg; switch (cfg->data_bits) { case UART_CFG_DATA_BITS_5: uart_cfg.data_bits = LCR_CS5; break; case UART_CFG_DATA_BITS_6: uart_cfg.data_bits = LCR_CS6; break; case UART_CFG_DATA_BITS_7: uart_cfg.data_bits = LCR_CS7; break; case UART_CFG_DATA_BITS_8: uart_cfg.data_bits = LCR_CS8; break; default: ret = -ENOTSUP; goto out; } switch (cfg->stop_bits) { case UART_CFG_STOP_BITS_1: uart_cfg.stop_bits = LCR_1_STB; break; case UART_CFG_STOP_BITS_2: uart_cfg.stop_bits = LCR_2_STB; break; default: ret = -ENOTSUP; goto out; } switch (cfg->parity) { case UART_CFG_PARITY_NONE: uart_cfg.parity = LCR_PDIS; break; case UART_CFG_PARITY_EVEN: uart_cfg.parity = LCR_EPS; break; default: ret = -ENOTSUP; goto out; } dev_data->uart_config = *cfg; /* data bits, stop bits, parity, clear DLAB */ OUTBYTE(LCR(dev), uart_cfg.data_bits | uart_cfg.stop_bits | uart_cfg.parity); mdc = MCR_OUT2 | MCR_RTS | MCR_DTR; #ifdef CONFIG_UART_NS16750 if (cfg->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS) { mdc |= MCR_AFCE; } #endif OUTBYTE(MDC(dev), mdc); /* * Program FIFO: enabled, mode 0 (set for compatibility with quark), * generate the interrupt at 8th byte * Clear TX and RX FIFO */ OUTBYTE(FCR(dev), FCR_FIFO | FCR_MODE0 | FCR_FIFO_8 | FCR_RCVRCLR | FCR_XMITCLR #ifdef CONFIG_UART_NS16750 | FCR_FIFO_64 #endif ); /* clear the port */ INBYTE(RDR(dev)); /* disable interrupts */ OUTBYTE(IER(dev), 0x00); out: k_spin_unlock(&dev_data->lock, key); return ret; }; static int uart_ns16550_config_get(struct device *dev, struct uart_config *cfg) { struct uart_ns16550_dev_data_t *data = DEV_DATA(dev); cfg->baudrate = data->uart_config.baudrate; cfg->parity = data->uart_config.parity; cfg->stop_bits = data->uart_config.stop_bits; cfg->data_bits = data->uart_config.data_bits; cfg->flow_ctrl = data->uart_config.flow_ctrl; return 0; } /** * @brief Initialize individual UART port * * This routine is called to reset the chip in a quiescent state. * * @param dev UART device struct * * @return 0 if successful, failed otherwise */ static int uart_ns16550_init(struct device *dev) { int ret; ret = uart_ns16550_configure(dev, &DEV_DATA(dev)->uart_config); if (ret != 0) { return ret; } #ifdef CONFIG_UART_INTERRUPT_DRIVEN DEV_CFG(dev)->irq_config_func(dev); #endif return 0; } /** * @brief Poll the device for input. * * @param dev UART device struct * @param c Pointer to character * * @return 0 if a character arrived, -1 if the input buffer if empty. */ static int uart_ns16550_poll_in(struct device *dev, unsigned char *c) { int ret = -1; k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); if ((INBYTE(LSR(dev)) & LSR_RXRDY) != 0) { /* got a character */ *c = INBYTE(RDR(dev)); ret = 0; } k_spin_unlock(&DEV_DATA(dev)->lock, key); return ret; } /** * @brief Output a character in polled mode. * * Checks if the transmitter is empty. If empty, a character is written to * the data register. * * If the hardware flow control is enabled then the handshake signal CTS has to * be asserted in order to send a character. * * @param dev UART device struct * @param c Character to send */ static void uart_ns16550_poll_out(struct device *dev, unsigned char c) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); while ((INBYTE(LSR(dev)) & LSR_THRE) == 0) { } OUTBYTE(THR(dev), c); k_spin_unlock(&DEV_DATA(dev)->lock, key); } /** * @brief Check if an error was received * * @param dev UART device struct * * @return one of UART_ERROR_OVERRUN, UART_ERROR_PARITY, UART_ERROR_FRAMING, * UART_BREAK if an error was detected, 0 otherwise. */ static int uart_ns16550_err_check(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); int check = (INBYTE(LSR(dev)) & LSR_EOB_MASK); k_spin_unlock(&DEV_DATA(dev)->lock, key); return check >> 1; } #if CONFIG_UART_INTERRUPT_DRIVEN /** * @brief Fill FIFO with data * * @param dev UART device struct * @param tx_data Data to transmit * @param size Number of bytes to send * * @return Number of bytes sent */ static int uart_ns16550_fifo_fill(struct device *dev, const uint8_t *tx_data, int size) { int i; k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); for (i = 0; (i < size) && (INBYTE(LSR(dev)) & LSR_THRE) != 0; i++) { OUTBYTE(THR(dev), tx_data[i]); } k_spin_unlock(&DEV_DATA(dev)->lock, key); return i; } /** * @brief Read data from FIFO * * @param dev UART device struct * @param rxData Data container * @param size Container size * * @return Number of bytes read */ static int uart_ns16550_fifo_read(struct device *dev, uint8_t *rx_data, const int size) { int i; k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); for (i = 0; (i < size) && (INBYTE(LSR(dev)) & LSR_RXRDY) != 0; i++) { rx_data[i] = INBYTE(RDR(dev)); } k_spin_unlock(&DEV_DATA(dev)->lock, key); return i; } /** * @brief Enable TX interrupt in IER * * @param dev UART device struct * * @return N/A */ static void uart_ns16550_irq_tx_enable(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); OUTBYTE(IER(dev), INBYTE(IER(dev)) | IER_TBE); k_spin_unlock(&DEV_DATA(dev)->lock, key); } /** * @brief Disable TX interrupt in IER * * @param dev UART device struct * * @return N/A */ static void uart_ns16550_irq_tx_disable(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); OUTBYTE(IER(dev), INBYTE(IER(dev)) & (~IER_TBE)); k_spin_unlock(&DEV_DATA(dev)->lock, key); } /** * @brief Check if Tx IRQ has been raised * * @param dev UART device struct * * @return 1 if an IRQ is ready, 0 otherwise */ static int uart_ns16550_irq_tx_ready(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); int ret = ((IIRC(dev) & IIR_ID) == IIR_THRE) ? 1 : 0; k_spin_unlock(&DEV_DATA(dev)->lock, key); return ret; } /** * @brief Check if nothing remains to be transmitted * * @param dev UART device struct * * @return 1 if nothing remains to be transmitted, 0 otherwise */ static int uart_ns16550_irq_tx_complete(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); int ret = ((INBYTE(LSR(dev)) & (LSR_TEMT | LSR_THRE)) == (LSR_TEMT | LSR_THRE)) ? 1 : 0; k_spin_unlock(&DEV_DATA(dev)->lock, key); return ret; } /** * @brief Enable RX interrupt in IER * * @param dev UART device struct * * @return N/A */ static void uart_ns16550_irq_rx_enable(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); OUTBYTE(IER(dev), INBYTE(IER(dev)) | IER_RXRDY); k_spin_unlock(&DEV_DATA(dev)->lock, key); } /** * @brief Disable RX interrupt in IER * * @param dev UART device struct * * @return N/A */ static void uart_ns16550_irq_rx_disable(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); OUTBYTE(IER(dev), INBYTE(IER(dev)) & (~IER_RXRDY)); k_spin_unlock(&DEV_DATA(dev)->lock, key); } /** * @brief Check if Rx IRQ has been raised * * @param dev UART device struct * * @return 1 if an IRQ is ready, 0 otherwise */ static int uart_ns16550_irq_rx_ready(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); int ret = ((IIRC(dev) & IIR_ID) == IIR_RBRF) ? 1 : 0; k_spin_unlock(&DEV_DATA(dev)->lock, key); return ret; } /** * @brief Enable error interrupt in IER * * @param dev UART device struct * * @return N/A */ static void uart_ns16550_irq_err_enable(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); OUTBYTE(IER(dev), INBYTE(IER(dev)) | IER_LSR); k_spin_unlock(&DEV_DATA(dev)->lock, key); } /** * @brief Disable error interrupt in IER * * @param dev UART device struct * * @return 1 if an IRQ is ready, 0 otherwise */ static void uart_ns16550_irq_err_disable(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); OUTBYTE(IER(dev), INBYTE(IER(dev)) & (~IER_LSR)); k_spin_unlock(&DEV_DATA(dev)->lock, key); } /** * @brief Check if any IRQ is pending * * @param dev UART device struct * * @return 1 if an IRQ is pending, 0 otherwise */ static int uart_ns16550_irq_is_pending(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); int ret = (!(IIRC(dev) & IIR_NIP)) ? 1 : 0; k_spin_unlock(&DEV_DATA(dev)->lock, key); return ret; } /** * @brief Update cached contents of IIR * * @param dev UART device struct * * @return Always 1 */ static int uart_ns16550_irq_update(struct device *dev) { k_spinlock_key_t key = k_spin_lock(&DEV_DATA(dev)->lock); IIRC(dev) = INBYTE(IIR(dev)); k_spin_unlock(&DEV_DATA(dev)->lock, key); return 1; } /** * @brief Set the callback function pointer for IRQ. * * @param dev UART device struct * @param cb Callback function pointer. * * @return N/A */ static void uart_ns16550_irq_callback_set(struct device *dev, uart_irq_callback_user_data_t cb, void *cb_data) { struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev); k_spinlock_key_t key = k_spin_lock(&dev_data->lock); dev_data->cb = cb; dev_data->cb_data = cb_data; k_spin_unlock(&dev_data->lock, key); } /** * @brief Interrupt service routine. * * This simply calls the callback function, if one exists. * * @param arg Argument to ISR. * * @return N/A */ static void uart_ns16550_isr(void *arg) { struct device *dev = arg; struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev); if (dev_data->cb) { dev_data->cb(dev_data->cb_data); } } #endif /* CONFIG_UART_INTERRUPT_DRIVEN */ #ifdef CONFIG_UART_NS16550_LINE_CTRL /** * @brief Manipulate line control for UART. * * @param dev UART device struct * @param ctrl The line control to be manipulated * @param val Value to set the line control * * @return 0 if successful, failed otherwise */ static int uart_ns16550_line_ctrl_set(struct device *dev, uint32_t ctrl, uint32_t val) { uint32_t mdc, chg; k_spinlock_key_t key; switch (ctrl) { case UART_LINE_CTRL_BAUD_RATE: set_baud_rate(dev, val); return 0; case UART_LINE_CTRL_RTS: case UART_LINE_CTRL_DTR: key = k_spin_lock(&DEV_DATA(dev)->lock); mdc = INBYTE(MDC(dev)); if (ctrl == UART_LINE_CTRL_RTS) { chg = MCR_RTS; } else { chg = MCR_DTR; } if (val) { mdc |= chg; } else { mdc &= ~(chg); } OUTBYTE(MDC(dev), mdc); k_spin_unlock(&DEV_DATA(dev)->lock, key); return 0; } return -ENOTSUP; } #endif /* CONFIG_UART_NS16550_LINE_CTRL */ #ifdef CONFIG_UART_NS16550_DRV_CMD /** * @brief Send extra command to driver * * @param dev UART device struct * @param cmd Command to driver * @param p Parameter to the command * * @return 0 if successful, failed otherwise */ static int uart_ns16550_drv_cmd(struct device *dev, uint32_t cmd, uint32_t p) { #ifdef UART_NS16550_DLF_ENABLED if (cmd == CMD_SET_DLF) { struct uart_ns16550_dev_data_t * const dev_data = DEV_DATA(dev); k_spinlock_key_t key = k_spin_lock(&dev_data->lock); dev_data->dlf = p; OUTBYTE(DLF(dev), dev_data->dlf); k_spin_unlock(&dev_data->lock, key); return 0; } #endif return -ENOTSUP; } #endif /* CONFIG_UART_NS16550_DRV_CMD */ static const struct uart_driver_api uart_ns16550_driver_api = { .poll_in = uart_ns16550_poll_in, .poll_out = uart_ns16550_poll_out, .err_check = uart_ns16550_err_check, .configure = uart_ns16550_configure, .config_get = uart_ns16550_config_get, #ifdef CONFIG_UART_INTERRUPT_DRIVEN .fifo_fill = uart_ns16550_fifo_fill, .fifo_read = uart_ns16550_fifo_read, .irq_tx_enable = uart_ns16550_irq_tx_enable, .irq_tx_disable = uart_ns16550_irq_tx_disable, .irq_tx_ready = uart_ns16550_irq_tx_ready, .irq_tx_complete = uart_ns16550_irq_tx_complete, .irq_rx_enable = uart_ns16550_irq_rx_enable, .irq_rx_disable = uart_ns16550_irq_rx_disable, .irq_rx_ready = uart_ns16550_irq_rx_ready, .irq_err_enable = uart_ns16550_irq_err_enable, .irq_err_disable = uart_ns16550_irq_err_disable, .irq_is_pending = uart_ns16550_irq_is_pending, .irq_update = uart_ns16550_irq_update, .irq_callback_set = uart_ns16550_irq_callback_set, #endif #ifdef CONFIG_UART_NS16550_LINE_CTRL .line_ctrl_set = uart_ns16550_line_ctrl_set, #endif #ifdef CONFIG_UART_NS16550_DRV_CMD .drv_cmd = uart_ns16550_drv_cmd, #endif }; #include #include #include #include