#!/usr/bin/env python3 # # Copyright (c) 2018 Intel Corporation. # # SPDX-License-Identifier: Apache-2.0 # """ This script will relocate .text, .rodata, .data and .bss sections from required files and places it in the required memory region. This memory region and file are given to this python script in the form of a string. Example of such a string would be:: SRAM2:COPY:/home/xyz/zephyr/samples/hello_world/src/main.c,\ SRAM1:COPY:/home/xyz/zephyr/samples/hello_world/src/main2.c, \ FLASH2:NOCOPY:/home/xyz/zephyr/samples/hello_world/src/main3.c One can also specify the program header for a given memory region: SRAM2\\ :phdr0:COPY:/home/xyz/zephyr/samples/hello_world/src/main.c To invoke this script:: python3 gen_relocate_app.py -i input_string -o generated_linker -c generated_code Configuration that needs to be sent to the python script. - If the memory is like SRAM1/SRAM2/CCD/AON then place full object in the sections - If the memory type is appended with _DATA / _TEXT/ _RODATA/ _BSS only the selected memory is placed in the required memory region. Others are ignored. - COPY/NOCOPY defines whether the script should generate the relocation code in code_relocation.c or not - NOKEEP will suppress the default behavior of marking every relocated symbol with KEEP() in the generated linker script. Multiple regions can be appended together like SRAM2_DATA_BSS this will place data and bss inside SRAM2. """ import sys import argparse import os import glob import warnings from collections import defaultdict from enum import Enum from pathlib import Path from typing import NamedTuple from typing import NewType from typing import Tuple from elftools.elf.elffile import ELFFile from elftools.elf.sections import SymbolTableSection MemoryRegion = NewType('MemoryRegion', str) class SectionKind(Enum): TEXT = "text" RODATA = "rodata" DATA = "data" BSS = "bss" LITERAL = "literal" def __str__(self): return self.name @classmethod def for_section_named(cls, name: str): """ Return the kind of section that includes a section with the given name. >>> SectionKind.for_section_with_name(".rodata.str1.4") >>> SectionKind.for_section_with_name(".device_deps") None """ if ".text." in name: return cls.TEXT elif ".rodata." in name: return cls.RODATA elif ".data." in name: return cls.DATA elif ".bss." in name: return cls.BSS elif ".literal." in name: return cls.LITERAL else: return None class OutputSection(NamedTuple): obj_file_name: str section_name: str keep: bool = True PRINT_TEMPLATE = """ KEEP(*{obj_file_name}({section_name})) """ PRINT_TEMPLATE_NOKEEP = """ *{obj_file_name}({section_name}) """ SECTION_LOAD_MEMORY_SEQ = """ __{0}_{1}_rom_start = LOADADDR(.{0}_{1}_reloc); """ LOAD_ADDRESS_LOCATION_FLASH = """ #ifdef CONFIG_XIP GROUP_DATA_LINK_IN({0}, ROMABLE_REGION) #else GROUP_DATA_LINK_IN({0}, {0}) #endif """ LOAD_ADDRESS_LOCATION_FLASH_NOCOPY = """ GROUP_LINK_IN({0}) """ LOAD_ADDRESS_LOCATION_BSS = "GROUP_LINK_IN({0})" MPU_RO_REGION_START = """ _{0}_mpu_ro_region_start = ORIGIN({1}); """ MPU_RO_REGION_END = """ _{0}_mpu_ro_region_end = .; """ # generic section creation format LINKER_SECTION_SEQ = """ /* Linker section for memory region {2} for {3} section */ SECTION_PROLOGUE(.{0}_{1}_reloc,,) {{ . = ALIGN(4); {4} . = ALIGN(4); }} {5} __{0}_{1}_reloc_end = .; __{0}_{1}_reloc_start = ADDR(.{0}_{1}_reloc); __{0}_{1}_reloc_size = __{0}_{1}_reloc_end - __{0}_{1}_reloc_start; """ LINKER_SECTION_SEQ_MPU = """ /* Linker section for memory region {2} for {3} section */ SECTION_PROLOGUE(.{0}_{1}_reloc,,) {{ __{0}_{1}_reloc_start = .; {4} #if {6} . = ALIGN({6}); #else MPU_ALIGN(__{0}_{1}_reloc_size); #endif __{0}_{1}_reloc_end = .; }} {5} __{0}_{1}_reloc_size = __{0}_{1}_reloc_end - __{0}_{1}_reloc_start; """ SOURCE_CODE_INCLUDES = """ /* Auto generated code. Do not modify.*/ #include #include #include #include """ EXTERN_LINKER_VAR_DECLARATION = """ extern char __{0}_{1}_reloc_start[]; extern char __{0}_{1}_rom_start[]; extern char __{0}_{1}_reloc_size[]; """ DATA_COPY_FUNCTION = """ void data_copy_xip_relocation(void) {{ {0} }} """ BSS_ZEROING_FUNCTION = """ void bss_zeroing_relocation(void) {{ {0} }} """ MEMCPY_TEMPLATE = """ z_early_memcpy(&__{0}_{1}_reloc_start, &__{0}_{1}_rom_start, (size_t) &__{0}_{1}_reloc_size); """ MEMSET_TEMPLATE = """ z_early_memset(&__{0}_bss_reloc_start, 0, (size_t) &__{0}_bss_reloc_size); """ def region_is_default_ram(region_name: str) -> bool: """ Test whether a memory region with the given name is the system's default RAM region or not. This is used to determine whether some items need to be omitted from custom regions and instead be placed in the default. In particular, mutable data placed in the default RAM section is ignored and is allowed to be handled normally by the linker because it is placed in that region anyway. """ return region_name == args.default_ram_region def find_sections(filename: str) -> 'dict[SectionKind, list[OutputSection]]': """ Locate relocatable sections in the given object file. The output value maps categories of sections to the list of actual sections located in the object file that fit in that category. """ obj_file_path = Path(filename) with open(obj_file_path, 'rb') as obj_file_desc: full_lib = ELFFile(obj_file_desc) if not full_lib: sys.exit("Error parsing file: " + filename) sections = [x for x in full_lib.iter_sections()] out = defaultdict(list) for section in sections: section_kind = SectionKind.for_section_named(section.name) if section_kind is None: continue out[section_kind].append( OutputSection(obj_file_path.name, section.name) ) # Common variables will be placed in the .bss section # only after linking in the final executable. This "if" finds # common symbols and warns the user of the problem. # The solution to which is simply assigning a 0 to # bss variable and it will go to the required place. if isinstance(section, SymbolTableSection): def is_common_symbol(s): return s.entry["st_shndx"] == "SHN_COMMON" for symbol in filter(is_common_symbol, section.iter_symbols()): warnings.warn("Common variable found. Move "+ symbol.name + " to bss by assigning it to 0/NULL") return out def assign_to_correct_mem_region( memory_region: str, full_list_of_sections: 'dict[SectionKind, list[OutputSection]]' ) -> 'dict[MemoryRegion, dict[SectionKind, list[OutputSection]]]': """ Generate a mapping of memory region to collection of output sections to be placed in each region. """ use_section_kinds, memory_region = section_kinds_from_memory_region(memory_region) memory_region, _, align_size = memory_region.partition('_') if align_size: mpu_align[memory_region] = int(align_size) keep_sections = '|NOKEEP' not in memory_region memory_region = memory_region.replace('|NOKEEP', '') output_sections = {} for used_kind in use_section_kinds: # Pass through section kinds that go into this memory region output_sections[used_kind] = [ section._replace(keep=keep_sections) for section in full_list_of_sections[used_kind] ] return {MemoryRegion(memory_region): output_sections} def section_kinds_from_memory_region(memory_region: str) -> 'Tuple[set[SectionKind], str]': """ Get the section kinds requested by the given memory region name. Region names can be like RAM_RODATA_TEXT or just RAM; a section kind may follow the region name. If no kinds are specified all are assumed. In addition to the parsed kinds, the input region minus specifiers for those kinds is returned. >>> section_kinds_from_memory_region('SRAM2_TEXT') ({}, 'SRAM2') """ out = set() for kind in SectionKind: specifier = f"_{kind}" if specifier in memory_region: out.add(kind) memory_region = memory_region.replace(specifier, "") if not out: # No listed kinds implies all of the kinds out = set(SectionKind) return (out, memory_region) def print_linker_sections(list_sections: 'list[OutputSection]'): out = '' for section in sorted(list_sections): template = PRINT_TEMPLATE if section.keep else PRINT_TEMPLATE_NOKEEP out += template.format(obj_file_name=section.obj_file_name, section_name=section.section_name) return out def add_phdr(memory_type, phdrs): return f'{memory_type} {phdrs[memory_type] if memory_type in phdrs else ""}' def string_create_helper( kind: SectionKind, memory_type, full_list_of_sections: 'dict[SectionKind, list[OutputSection]]', load_address_in_flash, is_copy, phdrs ): linker_string = '' if load_address_in_flash: if is_copy: load_address_string = LOAD_ADDRESS_LOCATION_FLASH.format(add_phdr(memory_type, phdrs)) else: load_address_string = LOAD_ADDRESS_LOCATION_FLASH_NOCOPY.format(add_phdr(memory_type, phdrs)) else: load_address_string = LOAD_ADDRESS_LOCATION_BSS.format(add_phdr(memory_type, phdrs)) if full_list_of_sections[kind]: # Create a complete list of funcs/ variables that goes in for this # memory type tmp = print_linker_sections(full_list_of_sections[kind]) if region_is_default_ram(memory_type) and kind in (SectionKind.DATA, SectionKind.BSS): linker_string += tmp else: if not region_is_default_ram(memory_type) and kind is SectionKind.RODATA: align_size = 0 if memory_type in mpu_align: align_size = mpu_align[memory_type] linker_string += LINKER_SECTION_SEQ_MPU.format(memory_type.lower(), kind.value, memory_type.upper(), kind, tmp, load_address_string, align_size) else: if region_is_default_ram(memory_type) and kind in (SectionKind.TEXT, SectionKind.LITERAL): align_size = 0 linker_string += LINKER_SECTION_SEQ_MPU.format(memory_type.lower(), kind.value, memory_type.upper(), kind, tmp, load_address_string, align_size) else: linker_string += LINKER_SECTION_SEQ.format(memory_type.lower(), kind.value, memory_type.upper(), kind, tmp, load_address_string) if load_address_in_flash: linker_string += SECTION_LOAD_MEMORY_SEQ.format(memory_type.lower(), kind.value, memory_type.upper(), kind) return linker_string def generate_linker_script(linker_file, sram_data_linker_file, sram_bss_linker_file, complete_list_of_sections, phdrs): gen_string = '' gen_string_sram_data = '' gen_string_sram_bss = '' for memory_type, full_list_of_sections in \ sorted(complete_list_of_sections.items()): is_copy = bool("|COPY" in memory_type) memory_type = memory_type.split("|", 1)[0] if region_is_default_ram(memory_type) and is_copy: gen_string += MPU_RO_REGION_START.format(memory_type.lower(), memory_type.upper()) gen_string += string_create_helper(SectionKind.LITERAL, memory_type, full_list_of_sections, 1, is_copy, phdrs) gen_string += string_create_helper(SectionKind.TEXT, memory_type, full_list_of_sections, 1, is_copy, phdrs) gen_string += string_create_helper(SectionKind.RODATA, memory_type, full_list_of_sections, 1, is_copy, phdrs) if region_is_default_ram(memory_type) and is_copy: gen_string += MPU_RO_REGION_END.format(memory_type.lower()) if region_is_default_ram(memory_type): gen_string_sram_data += string_create_helper(SectionKind.DATA, memory_type, full_list_of_sections, 1, 1, phdrs) gen_string_sram_bss += string_create_helper(SectionKind.BSS, memory_type, full_list_of_sections, 0, 1, phdrs) else: gen_string += string_create_helper(SectionKind.DATA, memory_type, full_list_of_sections, 1, 1, phdrs) gen_string += string_create_helper(SectionKind.BSS, memory_type, full_list_of_sections, 0, 1, phdrs) # finally writing to the linker file with open(linker_file, "w") as file_desc: file_desc.write(gen_string) with open(sram_data_linker_file, "w") as file_desc: file_desc.write(gen_string_sram_data) with open(sram_bss_linker_file, "w") as file_desc: file_desc.write(gen_string_sram_bss) def generate_memcpy_code(memory_type, full_list_of_sections, code_generation): generate_sections, memory_type = section_kinds_from_memory_region(memory_type) # Non-BSS sections get copied to the destination memory, except data in # main memory which gets copied automatically. for kind in (SectionKind.TEXT, SectionKind.RODATA, SectionKind.DATA): if region_is_default_ram(memory_type) and kind is SectionKind.DATA: continue if kind in generate_sections and full_list_of_sections[kind]: code_generation["copy_code"] += MEMCPY_TEMPLATE.format(memory_type.lower(), kind.value) code_generation["extern"] += EXTERN_LINKER_VAR_DECLARATION.format( memory_type.lower(), kind.value) # BSS sections in main memory are automatically zeroed; others need to have # zeroing code generated. if (SectionKind.BSS in generate_sections and full_list_of_sections[SectionKind.BSS] and not region_is_default_ram(memory_type) ): code_generation["zero_code"] += MEMSET_TEMPLATE.format(memory_type.lower()) code_generation["extern"] += EXTERN_LINKER_VAR_DECLARATION.format( memory_type.lower(), SectionKind.BSS.value) return code_generation def dump_header_file(header_file, code_generation): code_string = '' # create a dummy void function if there is no code to generate for # bss/data/text regions code_string += code_generation["extern"] if code_generation["copy_code"]: code_string += DATA_COPY_FUNCTION.format(code_generation["copy_code"]) else: code_string += DATA_COPY_FUNCTION.format("return;") if code_generation["zero_code"]: code_string += BSS_ZEROING_FUNCTION.format(code_generation["zero_code"]) else: code_string += BSS_ZEROING_FUNCTION.format("return;") with open(header_file, "w") as header_file_desc: header_file_desc.write(SOURCE_CODE_INCLUDES) header_file_desc.write(code_string) def parse_args(): global args parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, allow_abbrev=False) parser.add_argument("-d", "--directory", required=True, help="obj file's directory") parser.add_argument("-i", "--input_rel_dict", required=True, type=argparse.FileType('r'), help="input file with dict src:memory type(sram2 or ccm or aon etc)") parser.add_argument("-o", "--output", required=False, help="Output ld file") parser.add_argument("-s", "--output_sram_data", required=False, help="Output sram data ld file") parser.add_argument("-b", "--output_sram_bss", required=False, help="Output sram bss ld file") parser.add_argument("-c", "--output_code", required=False, help="Output relocation code header file") parser.add_argument("-R", "--default_ram_region", default='SRAM', help="Name of default RAM memory region for system") parser.add_argument("-v", "--verbose", action="count", default=0, help="Verbose Output") args = parser.parse_args() # return the absolute path for the object file. def get_obj_filename(searchpath, filename): # get the object file name which is almost always pended with .obj obj_filename = filename.split("/")[-1] + ".obj" for dirpath, _, files in os.walk(searchpath): for filename1 in files: if filename1 == obj_filename: if filename.split("/")[-2] in dirpath.split("/")[-1]: fullname = os.path.join(dirpath, filename1) return fullname # Extracts all possible components for the input string: # [\ :program_header]:[;...]:[;...] # Returns a 4-tuple with them: (mem_region, program_header, flags, files) # If no `program_header` is defined, returns an empty string def parse_input_string(line): # Be careful when splitting by : to avoid breaking absolute paths on Windows mem_region, rest = line.split(':', 1) phdr = '' if mem_region.endswith(' '): mem_region = mem_region.rstrip() phdr, rest = rest.split(':', 1) # Split lists by semicolons, in part to support generator expressions flag_list, file_list = (lst.split(';') for lst in rest.split(':', 1)) return mem_region, phdr, flag_list, file_list # Create a dict with key as memory type and files as a list of values. # Also, return another dict with program headers for memory regions def create_dict_wrt_mem(): # need to support wild card * rel_dict = dict() phdrs = dict() input_rel_dict = args.input_rel_dict.read() if input_rel_dict == '': sys.exit("Disable CONFIG_CODE_DATA_RELOCATION if no file needs relocation") for line in input_rel_dict.split('|'): if ':' not in line: continue mem_region, phdr, flag_list, file_list = parse_input_string(line) # Handle any program header if phdr != '': phdrs[mem_region] = f':{phdr}' file_name_list = [] # Use glob matching on each file in the list for file_glob in file_list: glob_results = glob.glob(file_glob) if not glob_results: warnings.warn("File: "+file_glob+" Not found") continue elif len(glob_results) > 1: warnings.warn("Regex in file lists is deprecated, please use file(GLOB) instead") file_name_list.extend(glob_results) if len(file_name_list) == 0: continue if mem_region == '': continue if args.verbose: print("Memory region ", mem_region, " Selected for files:", file_name_list) mem_region = "|".join((mem_region, *flag_list)) if mem_region in rel_dict: rel_dict[mem_region].extend(file_name_list) else: rel_dict[mem_region] = file_name_list return rel_dict, phdrs def main(): global mpu_align mpu_align = {} parse_args() searchpath = args.directory linker_file = args.output sram_data_linker_file = args.output_sram_data sram_bss_linker_file = args.output_sram_bss rel_dict, phdrs = create_dict_wrt_mem() complete_list_of_sections: 'dict[MemoryRegion, dict[SectionKind, list[OutputSection]]]' \ = defaultdict(lambda: defaultdict(list)) # Create/or truncate file contents if it already exists # raw = open(linker_file, "w") # for each memory_type, create text/rodata/data/bss sections for all obj files for memory_type, files in rel_dict.items(): full_list_of_sections: 'dict[SectionKind, list[OutputSection]]' = defaultdict(list) for filename in files: obj_filename = get_obj_filename(searchpath, filename) # the obj file wasn't found. Probably not compiled. if not obj_filename: continue file_sections = find_sections(obj_filename) # Merge sections from file into collection of sections for all files for category, sections in file_sections.items(): full_list_of_sections[category].extend(sections) # cleanup and attach the sections to the memory type after cleanup. sections_by_category = assign_to_correct_mem_region(memory_type, full_list_of_sections) for (region, section_category_map) in sections_by_category.items(): for (category, sections) in section_category_map.items(): complete_list_of_sections[region][category].extend(sections) generate_linker_script(linker_file, sram_data_linker_file, sram_bss_linker_file, complete_list_of_sections, phdrs) code_generation = {"copy_code": '', "zero_code": '', "extern": ''} for mem_type, list_of_sections in sorted(complete_list_of_sections.items()): if "|COPY" in mem_type: mem_type = mem_type.split("|", 1)[0] code_generation = generate_memcpy_code(mem_type, list_of_sections, code_generation) dump_header_file(args.output_code, code_generation) if __name__ == '__main__': main()