/* * Copyright (c) 2018 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include static uint64_t curr_tick; static sys_dlist_t timeout_list = SYS_DLIST_STATIC_INIT(&timeout_list); static struct k_spinlock timeout_lock; #define MAX_WAIT (IS_ENABLED(CONFIG_SYSTEM_CLOCK_SLOPPY_IDLE) \ ? K_TICKS_FOREVER : INT_MAX) /* Ticks left to process in the currently-executing sys_clock_announce() */ static int announce_remaining; #if defined(CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME) int z_clock_hw_cycles_per_sec = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; #ifdef CONFIG_USERSPACE static inline int z_vrfy_sys_clock_hw_cycles_per_sec_runtime_get(void) { return z_impl_sys_clock_hw_cycles_per_sec_runtime_get(); } #include #endif /* CONFIG_USERSPACE */ #endif /* CONFIG_TIMER_READS_ITS_FREQUENCY_AT_RUNTIME */ static struct _timeout *first(void) { sys_dnode_t *t = sys_dlist_peek_head(&timeout_list); return (t == NULL) ? NULL : CONTAINER_OF(t, struct _timeout, node); } static struct _timeout *next(struct _timeout *t) { sys_dnode_t *n = sys_dlist_peek_next(&timeout_list, &t->node); return (n == NULL) ? NULL : CONTAINER_OF(n, struct _timeout, node); } static void remove_timeout(struct _timeout *t) { if (next(t) != NULL) { next(t)->dticks += t->dticks; } sys_dlist_remove(&t->node); } static int32_t elapsed(void) { /* While sys_clock_announce() is executing, new relative timeouts will be * scheduled relatively to the currently firing timeout's original tick * value (=curr_tick) rather than relative to the current * sys_clock_elapsed(). * * This means that timeouts being scheduled from within timeout callbacks * will be scheduled at well-defined offsets from the currently firing * timeout. * * As a side effect, the same will happen if an ISR with higher priority * preempts a timeout callback and schedules a timeout. * * The distinction is implemented by looking at announce_remaining which * will be non-zero while sys_clock_announce() is executing and zero * otherwise. */ return announce_remaining == 0 ? sys_clock_elapsed() : 0U; } static int32_t next_timeout(void) { struct _timeout *to = first(); int32_t ticks_elapsed = elapsed(); int32_t ret; if ((to == NULL) || ((int64_t)(to->dticks - ticks_elapsed) > (int64_t)INT_MAX)) { ret = MAX_WAIT; } else { ret = MAX(0, to->dticks - ticks_elapsed); } return ret; } void z_add_timeout(struct _timeout *to, _timeout_func_t fn, k_timeout_t timeout) { if (K_TIMEOUT_EQ(timeout, K_FOREVER)) { return; } #ifdef CONFIG_KERNEL_COHERENCE __ASSERT_NO_MSG(arch_mem_coherent(to)); #endif /* CONFIG_KERNEL_COHERENCE */ __ASSERT(!sys_dnode_is_linked(&to->node), ""); to->fn = fn; K_SPINLOCK(&timeout_lock) { struct _timeout *t; if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && (Z_TICK_ABS(timeout.ticks) >= 0)) { k_ticks_t ticks = Z_TICK_ABS(timeout.ticks) - curr_tick; to->dticks = MAX(1, ticks); } else { to->dticks = timeout.ticks + 1 + elapsed(); } for (t = first(); t != NULL; t = next(t)) { if (t->dticks > to->dticks) { t->dticks -= to->dticks; sys_dlist_insert(&t->node, &to->node); break; } to->dticks -= t->dticks; } if (t == NULL) { sys_dlist_append(&timeout_list, &to->node); } if (to == first() && announce_remaining == 0) { sys_clock_set_timeout(next_timeout(), false); } } } int z_abort_timeout(struct _timeout *to) { int ret = -EINVAL; K_SPINLOCK(&timeout_lock) { if (sys_dnode_is_linked(&to->node)) { remove_timeout(to); ret = 0; } } return ret; } /* must be locked */ static k_ticks_t timeout_rem(const struct _timeout *timeout) { k_ticks_t ticks = 0; for (struct _timeout *t = first(); t != NULL; t = next(t)) { ticks += t->dticks; if (timeout == t) { break; } } return ticks; } k_ticks_t z_timeout_remaining(const struct _timeout *timeout) { k_ticks_t ticks = 0; K_SPINLOCK(&timeout_lock) { if (!z_is_inactive_timeout(timeout)) { ticks = timeout_rem(timeout) - elapsed(); } } return ticks; } k_ticks_t z_timeout_expires(const struct _timeout *timeout) { k_ticks_t ticks = 0; K_SPINLOCK(&timeout_lock) { ticks = curr_tick; if (!z_is_inactive_timeout(timeout)) { ticks += timeout_rem(timeout); } } return ticks; } int32_t z_get_next_timeout_expiry(void) { int32_t ret = (int32_t) K_TICKS_FOREVER; K_SPINLOCK(&timeout_lock) { ret = next_timeout(); } return ret; } void sys_clock_announce(int32_t ticks) { k_spinlock_key_t key = k_spin_lock(&timeout_lock); /* We release the lock around the callbacks below, so on SMP * systems someone might be already running the loop. Don't * race (which will cause paralllel execution of "sequential" * timeouts and confuse apps), just increment the tick count * and return. */ if (IS_ENABLED(CONFIG_SMP) && (announce_remaining != 0)) { announce_remaining += ticks; k_spin_unlock(&timeout_lock, key); return; } announce_remaining = ticks; struct _timeout *t; for (t = first(); (t != NULL) && (t->dticks <= announce_remaining); t = first()) { int dt = t->dticks; curr_tick += dt; t->dticks = 0; remove_timeout(t); k_spin_unlock(&timeout_lock, key); t->fn(t); key = k_spin_lock(&timeout_lock); announce_remaining -= dt; } if (t != NULL) { t->dticks -= announce_remaining; } curr_tick += announce_remaining; announce_remaining = 0; sys_clock_set_timeout(next_timeout(), false); k_spin_unlock(&timeout_lock, key); #ifdef CONFIG_TIMESLICING z_time_slice(); #endif /* CONFIG_TIMESLICING */ } int64_t sys_clock_tick_get(void) { uint64_t t = 0U; K_SPINLOCK(&timeout_lock) { t = curr_tick + elapsed(); } return t; } uint32_t sys_clock_tick_get_32(void) { #ifdef CONFIG_TICKLESS_KERNEL return (uint32_t)sys_clock_tick_get(); #else return (uint32_t)curr_tick; #endif /* CONFIG_TICKLESS_KERNEL */ } int64_t z_impl_k_uptime_ticks(void) { return sys_clock_tick_get(); } #ifdef CONFIG_USERSPACE static inline int64_t z_vrfy_k_uptime_ticks(void) { return z_impl_k_uptime_ticks(); } #include #endif /* CONFIG_USERSPACE */ k_timepoint_t sys_timepoint_calc(k_timeout_t timeout) { k_timepoint_t timepoint; if (K_TIMEOUT_EQ(timeout, K_FOREVER)) { timepoint.tick = UINT64_MAX; } else if (K_TIMEOUT_EQ(timeout, K_NO_WAIT)) { timepoint.tick = 0; } else { k_ticks_t dt = timeout.ticks; if (IS_ENABLED(CONFIG_TIMEOUT_64BIT) && Z_TICK_ABS(dt) >= 0) { timepoint.tick = Z_TICK_ABS(dt); } else { timepoint.tick = sys_clock_tick_get() + MAX(1, dt); } } return timepoint; } k_timeout_t sys_timepoint_timeout(k_timepoint_t timepoint) { uint64_t now, remaining; if (timepoint.tick == UINT64_MAX) { return K_FOREVER; } if (timepoint.tick == 0) { return K_NO_WAIT; } now = sys_clock_tick_get(); remaining = (timepoint.tick > now) ? (timepoint.tick - now) : 0; return K_TICKS(remaining); } #ifdef CONFIG_ZTEST void z_impl_sys_clock_tick_set(uint64_t tick) { curr_tick = tick; } void z_vrfy_sys_clock_tick_set(uint64_t tick) { z_impl_sys_clock_tick_set(tick); } #endif /* CONFIG_ZTEST */