/* * Copyright (c) 2020 Intel Corporation. * * SPDX-License-Identifier: Apache-2.0 */ #ifndef KERNEL_INCLUDE_MMU_H #define KERNEL_INCLUDE_MMU_H #ifdef CONFIG_MMU #include #include #include #include #include #include /* * At present, page frame management is only done for main system RAM, * and we generate paging structures based on CONFIG_SRAM_BASE_ADDRESS * and CONFIG_SRAM_SIZE. * * If we have other RAM regions (DCCM, etc) these typically have special * properties and shouldn't be used generically for demand paging or * anonymous mappings. We don't currently maintain an ontology of these in the * core kernel. */ #define Z_PHYS_RAM_START ((uintptr_t)CONFIG_SRAM_BASE_ADDRESS) #define Z_PHYS_RAM_SIZE (KB(CONFIG_SRAM_SIZE)) #define Z_PHYS_RAM_END (Z_PHYS_RAM_START + Z_PHYS_RAM_SIZE) #define Z_NUM_PAGE_FRAMES (Z_PHYS_RAM_SIZE / (size_t)CONFIG_MMU_PAGE_SIZE) /** End virtual address of virtual address space */ #define Z_VIRT_RAM_START ((uint8_t *)CONFIG_KERNEL_VM_BASE) #define Z_VIRT_RAM_SIZE ((size_t)CONFIG_KERNEL_VM_SIZE) #define Z_VIRT_RAM_END (Z_VIRT_RAM_START + Z_VIRT_RAM_SIZE) /* Boot-time virtual location of the kernel image. */ #define Z_KERNEL_VIRT_START ((uint8_t *)&z_mapped_start[0]) #define Z_KERNEL_VIRT_END ((uint8_t *)&z_mapped_end[0]) #define Z_KERNEL_VIRT_SIZE (Z_KERNEL_VIRT_END - Z_KERNEL_VIRT_START) #define Z_VM_OFFSET ((CONFIG_KERNEL_VM_BASE + CONFIG_KERNEL_VM_OFFSET) - \ (CONFIG_SRAM_BASE_ADDRESS + CONFIG_SRAM_OFFSET)) /* Only applies to boot RAM mappings within the Zephyr image that have never * been remapped or paged out. Never use this unless you know exactly what you * are doing. */ #define Z_BOOT_VIRT_TO_PHYS(virt) ((uintptr_t)(((uint8_t *)virt) - Z_VM_OFFSET)) #define Z_BOOT_PHYS_TO_VIRT(phys) ((uint8_t *)(((uintptr_t)phys) + Z_VM_OFFSET)) #ifdef CONFIG_ARCH_MAPS_ALL_RAM #define Z_FREE_VM_START Z_BOOT_PHYS_TO_VIRT(Z_PHYS_RAM_END) #else #define Z_FREE_VM_START Z_KERNEL_VIRT_END #endif /* CONFIG_ARCH_MAPS_ALL_RAM */ /* * Macros and data structures for physical page frame accounting, * APIs for use by eviction and backing store algorithms. This code * is otherwise not application-facing. */ /* * z_page_frame flags bits * * Requirements: * - Z_PAGE_FRAME_FREE must be one of the possible sfnode flag bits * - All bit values must be lower than CONFIG_MMU_PAGE_SIZE */ /** This physical page is free and part of the free list */ #define Z_PAGE_FRAME_FREE BIT(0) /** This physical page is reserved by hardware; we will never use it */ #define Z_PAGE_FRAME_RESERVED BIT(1) /** This page contains critical kernel data and will never be swapped */ #define Z_PAGE_FRAME_PINNED BIT(2) /** * This physical page is mapped to some virtual memory address * * Currently, we just support one mapping per page frame. If a page frame * is mapped to multiple virtual pages then it must be pinned. */ #define Z_PAGE_FRAME_MAPPED BIT(3) /** * This page frame is currently involved in a page-in/out operation */ #define Z_PAGE_FRAME_BUSY BIT(4) /** * This page frame has a clean copy in the backing store */ #define Z_PAGE_FRAME_BACKED BIT(5) /** * Data structure for physical page frames * * An array of these is instantiated, one element per physical RAM page. * Hence it's necessary to constrain its size as much as possible. */ struct z_page_frame { union { /* * If mapped, Z_PAGE_FRAME_* flags and virtual address * this page is mapped to. */ uintptr_t va_and_flags; /* * If unmapped and available, free pages list membership * with the Z_PAGE_FRAME_FREE flag. */ sys_sfnode_t node; }; /* Backing store and eviction algorithms may both need to * require additional per-frame custom data for accounting purposes. * They should declare their own array with indices matching * z_page_frames[] ones whenever possible. * They may also want additional flags bits that could be stored here * and they shouldn't clobber each other. At all costs the total * size of struct z_page_frame must be minimized. */ }; /* Note: this must be false for the other flag bits to be valid */ static inline bool z_page_frame_is_free(struct z_page_frame *pf) { return (pf->va_and_flags & Z_PAGE_FRAME_FREE) != 0U; } static inline bool z_page_frame_is_pinned(struct z_page_frame *pf) { return (pf->va_and_flags & Z_PAGE_FRAME_PINNED) != 0U; } static inline bool z_page_frame_is_reserved(struct z_page_frame *pf) { return (pf->va_and_flags & Z_PAGE_FRAME_RESERVED) != 0U; } static inline bool z_page_frame_is_mapped(struct z_page_frame *pf) { return (pf->va_and_flags & Z_PAGE_FRAME_MAPPED) != 0U; } static inline bool z_page_frame_is_busy(struct z_page_frame *pf) { return (pf->va_and_flags & Z_PAGE_FRAME_BUSY) != 0U; } static inline bool z_page_frame_is_backed(struct z_page_frame *pf) { return (pf->va_and_flags & Z_PAGE_FRAME_BACKED) != 0U; } static inline bool z_page_frame_is_evictable(struct z_page_frame *pf) { return (!z_page_frame_is_free(pf) && !z_page_frame_is_reserved(pf) && z_page_frame_is_mapped(pf) && !z_page_frame_is_pinned(pf) && !z_page_frame_is_busy(pf)); } /* If true, page is not being used for anything, is not reserved, is not * a member of some free pages list, isn't busy, and is ready to be mapped * in memory */ static inline bool z_page_frame_is_available(struct z_page_frame *page) { return page->va_and_flags == 0U; } static inline void z_page_frame_set(struct z_page_frame *pf, uint8_t flags) { pf->va_and_flags |= flags; } static inline void z_page_frame_clear(struct z_page_frame *pf, uint8_t flags) { /* ensure bit inversion to follow is done on the proper type width */ uintptr_t wide_flags = flags; pf->va_and_flags &= ~wide_flags; } static inline void z_assert_phys_aligned(uintptr_t phys) { __ASSERT(phys % CONFIG_MMU_PAGE_SIZE == 0U, "physical address 0x%lx is not page-aligned", phys); (void)phys; } extern struct z_page_frame z_page_frames[Z_NUM_PAGE_FRAMES]; static inline uintptr_t z_page_frame_to_phys(struct z_page_frame *pf) { return (uintptr_t)((pf - z_page_frames) * CONFIG_MMU_PAGE_SIZE) + Z_PHYS_RAM_START; } /* Presumes there is but one mapping in the virtual address space */ static inline void *z_page_frame_to_virt(struct z_page_frame *pf) { uintptr_t flags_mask = CONFIG_MMU_PAGE_SIZE - 1; return (void *)(pf->va_and_flags & ~flags_mask); } static inline bool z_is_page_frame(uintptr_t phys) { z_assert_phys_aligned(phys); return IN_RANGE(phys, (uintptr_t)Z_PHYS_RAM_START, (uintptr_t)(Z_PHYS_RAM_END - 1)); } static inline struct z_page_frame *z_phys_to_page_frame(uintptr_t phys) { __ASSERT(z_is_page_frame(phys), "0x%lx not an SRAM physical address", phys); return &z_page_frames[(phys - Z_PHYS_RAM_START) / CONFIG_MMU_PAGE_SIZE]; } static inline void z_mem_assert_virtual_region(uint8_t *addr, size_t size) { __ASSERT((uintptr_t)addr % CONFIG_MMU_PAGE_SIZE == 0U, "unaligned addr %p", addr); __ASSERT(size % CONFIG_MMU_PAGE_SIZE == 0U, "unaligned size %zu", size); __ASSERT(!Z_DETECT_POINTER_OVERFLOW(addr, size), "region %p size %zu zero or wraps around", addr, size); __ASSERT(IN_RANGE((uintptr_t)addr, (uintptr_t)Z_VIRT_RAM_START, ((uintptr_t)Z_VIRT_RAM_END - 1)) && IN_RANGE(((uintptr_t)addr + size - 1), (uintptr_t)Z_VIRT_RAM_START, ((uintptr_t)Z_VIRT_RAM_END - 1)), "invalid virtual address region %p (%zu)", addr, size); } /* Debug function, pretty-print page frame information for all frames * concisely to printk. */ void z_page_frames_dump(void); /* Convenience macro for iterating over all page frames */ #define Z_PAGE_FRAME_FOREACH(_phys, _pageframe) \ for (_phys = Z_PHYS_RAM_START, _pageframe = z_page_frames; \ _phys < Z_PHYS_RAM_END; \ _phys += CONFIG_MMU_PAGE_SIZE, _pageframe++) #ifdef CONFIG_DEMAND_PAGING /* We reserve a virtual page as a scratch area for page-ins/outs at the end * of the address space */ #define Z_VM_RESERVED CONFIG_MMU_PAGE_SIZE #define Z_SCRATCH_PAGE ((void *)((uintptr_t)CONFIG_KERNEL_VM_BASE + \ (uintptr_t)CONFIG_KERNEL_VM_SIZE - \ CONFIG_MMU_PAGE_SIZE)) #else #define Z_VM_RESERVED 0 #endif /* CONFIG_DEMAND_PAGING */ #ifdef CONFIG_DEMAND_PAGING /* * Core kernel demand paging APIs */ /** * Number of page faults since system startup * * Counts only those page faults that were handled successfully by the demand * paging mechanism and were not errors. * * @return Number of successful page faults */ unsigned long z_num_pagefaults_get(void); /** * Free a page frame physical address by evicting its contents * * The indicated page frame, if it contains a data page, will have that * data page evicted to the backing store. The page frame will then be * marked as available for mappings or page-ins. * * This is useful for freeing up entire memory banks so that they may be * deactivated to save power. * * If CONFIG_DEMAND_PAGING_ALLOW_IRQ is enabled, this function may not be * called by ISRs as the backing store may be in-use. * * @param phys Page frame physical address * @retval 0 Success * @retval -ENOMEM Insufficient backing store space */ int z_page_frame_evict(uintptr_t phys); /** * Handle a page fault for a virtual data page * * This is invoked from the architecture page fault handler. * * If a valid page fault, the core kernel will obtain a page frame, * populate it with the data page that was evicted to the backing store, * update page tables, and return so that the faulting instruction may be * re-tried. * * The architecture must not call this function if the page was mapped and * not paged out at the time the exception was triggered (i.e. a protection * violation for a mapped page). * * If the faulting context had interrupts disabled when the page fault was * triggered, the entire page fault handling path must have interrupts * disabled, including the invocation of this function. * * Otherwise, interrupts may be enabled and the page fault handler may be * preemptible. Races to page-in will be appropriately handled by the kernel. * * @param addr Faulting virtual address * @retval true Page fault successfully handled, or nothing needed to be done. * The arch layer should retry the faulting instruction. * @retval false This page fault was from an un-mapped page, should * be treated as an error, and not re-tried. */ bool z_page_fault(void *addr); #endif /* CONFIG_DEMAND_PAGING */ #endif /* CONFIG_MMU */ #endif /* KERNEL_INCLUDE_MMU_H */