/* * Copyright (c) 2018, Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include LOG_MODULE_REGISTER(spi_nrfx_spis, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" struct spi_nrfx_data { struct spi_context ctx; const struct device *dev; struct k_sem wake_sem; struct gpio_callback wake_cb_data; }; struct spi_nrfx_config { nrfx_spis_t spis; nrfx_spis_config_t config; void (*irq_connect)(void); uint16_t max_buf_len; const struct pinctrl_dev_config *pcfg; struct gpio_dt_spec wake_gpio; }; static inline nrf_spis_mode_t get_nrf_spis_mode(uint16_t operation) { if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) { if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) { return NRF_SPIS_MODE_3; } else { return NRF_SPIS_MODE_2; } } else { if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) { return NRF_SPIS_MODE_1; } else { return NRF_SPIS_MODE_0; } } } static inline nrf_spis_bit_order_t get_nrf_spis_bit_order(uint16_t operation) { if (operation & SPI_TRANSFER_LSB) { return NRF_SPIS_BIT_ORDER_LSB_FIRST; } else { return NRF_SPIS_BIT_ORDER_MSB_FIRST; } } static int configure(const struct device *dev, const struct spi_config *spi_cfg) { const struct spi_nrfx_config *dev_config = dev->config; struct spi_nrfx_data *dev_data = dev->data; struct spi_context *ctx = &dev_data->ctx; if (spi_context_configured(ctx, spi_cfg)) { /* Already configured. No need to do it again. */ return 0; } if (spi_cfg->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (SPI_OP_MODE_GET(spi_cfg->operation) == SPI_OP_MODE_MASTER) { LOG_ERR("Master mode is not supported on %s", dev->name); return -EINVAL; } if (spi_cfg->operation & SPI_MODE_LOOP) { LOG_ERR("Loopback mode is not supported"); return -EINVAL; } if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) && (spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single line mode is supported"); return -EINVAL; } if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) { LOG_ERR("Word sizes other than 8 bits are not supported"); return -EINVAL; } if (spi_cs_is_gpio(spi_cfg)) { LOG_ERR("CS control via GPIO is not supported"); return -EINVAL; } ctx->config = spi_cfg; nrf_spis_configure(dev_config->spis.p_reg, get_nrf_spis_mode(spi_cfg->operation), get_nrf_spis_bit_order(spi_cfg->operation)); return 0; } static int prepare_for_transfer(const struct device *dev, const uint8_t *tx_buf, size_t tx_buf_len, uint8_t *rx_buf, size_t rx_buf_len) { const struct spi_nrfx_config *dev_config = dev->config; nrfx_err_t result; if (tx_buf_len > dev_config->max_buf_len || rx_buf_len > dev_config->max_buf_len) { LOG_ERR("Invalid buffer sizes: Tx %d/Rx %d", tx_buf_len, rx_buf_len); return -EINVAL; } result = nrfx_spis_buffers_set(&dev_config->spis, tx_buf, tx_buf_len, rx_buf, rx_buf_len); if (result != NRFX_SUCCESS) { return -EIO; } return 0; } static void wake_callback(const struct device *dev, struct gpio_callback *cb, uint32_t pins) { struct spi_nrfx_data *dev_data = CONTAINER_OF(cb, struct spi_nrfx_data, wake_cb_data); const struct spi_nrfx_config *dev_config = dev_data->dev->config; (void)gpio_pin_interrupt_configure_dt(&dev_config->wake_gpio, GPIO_INT_DISABLE); k_sem_give(&dev_data->wake_sem); } static void wait_for_wake(struct spi_nrfx_data *dev_data, const struct spi_nrfx_config *dev_config) { /* If the WAKE line is low, wait until it goes high - this is a signal * from the master that it wants to perform a transfer. */ if (gpio_pin_get_raw(dev_config->wake_gpio.port, dev_config->wake_gpio.pin) == 0) { (void)gpio_pin_interrupt_configure_dt(&dev_config->wake_gpio, GPIO_INT_LEVEL_HIGH); (void)k_sem_take(&dev_data->wake_sem, K_FOREVER); } } static int transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; const struct spi_buf *tx_buf = tx_bufs ? tx_bufs->buffers : NULL; const struct spi_buf *rx_buf = rx_bufs ? rx_bufs->buffers : NULL; int error; spi_context_lock(&dev_data->ctx, asynchronous, cb, userdata, spi_cfg); error = configure(dev, spi_cfg); if (error != 0) { /* Invalid configuration. */ } else if ((tx_bufs && tx_bufs->count > 1) || (rx_bufs && rx_bufs->count > 1)) { LOG_ERR("Scattered buffers are not supported"); error = -ENOTSUP; } else if (tx_buf && tx_buf->len && !nrfx_is_in_ram(tx_buf->buf)) { LOG_ERR("Only buffers located in RAM are supported"); error = -ENOTSUP; } else { if (dev_config->wake_gpio.port) { wait_for_wake(dev_data, dev_config); nrf_spis_enable(dev_config->spis.p_reg); } error = prepare_for_transfer(dev, tx_buf ? tx_buf->buf : NULL, tx_buf ? tx_buf->len : 0, rx_buf ? rx_buf->buf : NULL, rx_buf ? rx_buf->len : 0); if (error == 0) { if (dev_config->wake_gpio.port) { /* Set the WAKE line low (tie it to ground) * to signal readiness to handle the transfer. */ gpio_pin_set_raw(dev_config->wake_gpio.port, dev_config->wake_gpio.pin, 0); /* Set the WAKE line back high (i.e. disconnect * output for its pin since it's configured in * open drain mode) so that it can be controlled * by the other side again. */ gpio_pin_set_raw(dev_config->wake_gpio.port, dev_config->wake_gpio.pin, 1); } error = spi_context_wait_for_completion(&dev_data->ctx); } if (dev_config->wake_gpio.port) { nrf_spis_disable(dev_config->spis.p_reg); } } spi_context_release(&dev_data->ctx, error); return error; } static int spi_nrfx_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_nrfx_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ static int spi_nrfx_release(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_nrfx_data *dev_data = dev->data; if (!spi_context_configured(&dev_data->ctx, spi_cfg)) { return -EINVAL; } spi_context_unlock_unconditionally(&dev_data->ctx); return 0; } static const struct spi_driver_api spi_nrfx_driver_api = { .transceive = spi_nrfx_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_nrfx_transceive_async, #endif .release = spi_nrfx_release, }; static void event_handler(const nrfx_spis_evt_t *p_event, void *p_context) { struct spi_nrfx_data *dev_data = p_context; if (p_event->evt_type == NRFX_SPIS_XFER_DONE) { spi_context_complete(&dev_data->ctx, dev_data->dev, p_event->rx_amount); } } static int spi_nrfx_init(const struct device *dev) { const struct spi_nrfx_config *dev_config = dev->config; struct spi_nrfx_data *dev_data = dev->data; nrfx_err_t result; int err; err = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } /* This sets only default values of mode and bit order. The ones to be * actually used are set in configure() when a transfer is prepared. */ result = nrfx_spis_init(&dev_config->spis, &dev_config->config, event_handler, dev_data); if (result != NRFX_SUCCESS) { LOG_ERR("Failed to initialize device: %s", dev->name); return -EBUSY; } if (dev_config->wake_gpio.port) { if (!gpio_is_ready_dt(&dev_config->wake_gpio)) { return -ENODEV; } /* In open drain mode, the output is disconnected when set to * the high state, so the following will effectively configure * the pin as an input only. */ err = gpio_pin_configure_dt(&dev_config->wake_gpio, GPIO_INPUT | GPIO_OUTPUT_HIGH | GPIO_OPEN_DRAIN); if (err < 0) { return err; } gpio_init_callback(&dev_data->wake_cb_data, wake_callback, BIT(dev_config->wake_gpio.pin)); err = gpio_add_callback(dev_config->wake_gpio.port, &dev_data->wake_cb_data); if (err < 0) { return err; } /* When the WAKE line is used, the SPIS peripheral is enabled * only after the master signals that it wants to perform a * transfer and it is disabled right after the transfer is done. * Waiting for the WAKE line to go high, what can be done using * the GPIO PORT event, instead of just waiting for the transfer * with the SPIS peripheral enabled, significantly reduces idle * power consumption. */ nrf_spis_disable(dev_config->spis.p_reg); } spi_context_unlock_unconditionally(&dev_data->ctx); return 0; } /* * Current factors requiring use of DT_NODELABEL: * * - HAL design (requirement of drv_inst_idx in nrfx_spis_t) * - Name-based HAL IRQ handlers, e.g. nrfx_spis_0_irq_handler */ #define SPIS(idx) DT_NODELABEL(spi##idx) #define SPIS_PROP(idx, prop) DT_PROP(SPIS(idx), prop) #define SPI_NRFX_SPIS_DEFINE(idx) \ static void irq_connect##idx(void) \ { \ IRQ_CONNECT(DT_IRQN(SPIS(idx)), DT_IRQ(SPIS(idx), priority), \ nrfx_isr, nrfx_spis_##idx##_irq_handler, 0); \ } \ static struct spi_nrfx_data spi_##idx##_data = { \ SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \ .dev = DEVICE_DT_GET(SPIS(idx)), \ .wake_sem = Z_SEM_INITIALIZER( \ spi_##idx##_data.wake_sem, 0, 1), \ }; \ PINCTRL_DT_DEFINE(SPIS(idx)); \ static const struct spi_nrfx_config spi_##idx##z_config = { \ .spis = { \ .p_reg = (NRF_SPIS_Type *)DT_REG_ADDR(SPIS(idx)), \ .drv_inst_idx = NRFX_SPIS##idx##_INST_IDX, \ }, \ .config = { \ .skip_gpio_cfg = true, \ .skip_psel_cfg = true, \ .mode = NRF_SPIS_MODE_0, \ .bit_order = NRF_SPIS_BIT_ORDER_MSB_FIRST, \ .orc = SPIS_PROP(idx, overrun_character), \ .def = SPIS_PROP(idx, def_char), \ }, \ .irq_connect = irq_connect##idx, \ .pcfg = PINCTRL_DT_DEV_CONFIG_GET(SPIS(idx)), \ .max_buf_len = BIT_MASK(SPIS_PROP(idx, easydma_maxcnt_bits)), \ .wake_gpio = GPIO_DT_SPEC_GET_OR(SPIS(idx), wake_gpios, {0}), \ }; \ BUILD_ASSERT(!DT_NODE_HAS_PROP(SPIS(idx), wake_gpios) || \ !(DT_GPIO_FLAGS(SPIS(idx), wake_gpios) & GPIO_ACTIVE_LOW),\ "WAKE line must be configured as active high"); \ DEVICE_DT_DEFINE(SPIS(idx), \ spi_nrfx_init, \ NULL, \ &spi_##idx##_data, \ &spi_##idx##z_config, \ POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, \ &spi_nrfx_driver_api) /* Macro creates device instance if it is enabled in devicetree. */ #define SPIS_DEVICE(periph, prefix, id, _) \ IF_ENABLED(CONFIG_HAS_HW_NRF_SPIS##prefix##id, (SPI_NRFX_SPIS_DEFINE(prefix##id);)) /* Macro iterates over nrfx_spis instances enabled in the nrfx_config.h. */ NRFX_FOREACH_ENABLED(SPIS, SPIS_DEVICE, (), (), _)