/* * Copyright (c) 2017 - 2018, Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include LOG_MODULE_REGISTER(spi_nrfx_spi, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" #include "spi_nrfx_common.h" struct spi_nrfx_data { struct spi_context ctx; const struct device *dev; size_t chunk_len; bool busy; bool initialized; }; struct spi_nrfx_config { nrfx_spi_t spi; nrfx_spi_config_t def_config; void (*irq_connect)(void); const struct pinctrl_dev_config *pcfg; uint32_t wake_pin; nrfx_gpiote_t wake_gpiote; }; static void event_handler(const nrfx_spi_evt_t *p_event, void *p_context); static inline nrf_spi_frequency_t get_nrf_spi_frequency(uint32_t frequency) { /* Get the highest supported frequency not exceeding the requested one. */ if (frequency < 250000) { return NRF_SPI_FREQ_125K; } else if (frequency < 500000) { return NRF_SPI_FREQ_250K; } else if (frequency < 1000000) { return NRF_SPI_FREQ_500K; } else if (frequency < 2000000) { return NRF_SPI_FREQ_1M; } else if (frequency < 4000000) { return NRF_SPI_FREQ_2M; } else if (frequency < 8000000) { return NRF_SPI_FREQ_4M; } else { return NRF_SPI_FREQ_8M; } } static inline nrf_spi_mode_t get_nrf_spi_mode(uint16_t operation) { if (SPI_MODE_GET(operation) & SPI_MODE_CPOL) { if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) { return NRF_SPI_MODE_3; } else { return NRF_SPI_MODE_2; } } else { if (SPI_MODE_GET(operation) & SPI_MODE_CPHA) { return NRF_SPI_MODE_1; } else { return NRF_SPI_MODE_0; } } } static inline nrf_spi_bit_order_t get_nrf_spi_bit_order(uint16_t operation) { if (operation & SPI_TRANSFER_LSB) { return NRF_SPI_BIT_ORDER_LSB_FIRST; } else { return NRF_SPI_BIT_ORDER_MSB_FIRST; } } static int configure(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; struct spi_context *ctx = &dev_data->ctx; nrfx_spi_config_t config; nrfx_err_t result; if (dev_data->initialized && spi_context_configured(ctx, spi_cfg)) { /* Already configured. No need to do it again. */ return 0; } if (spi_cfg->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (SPI_OP_MODE_GET(spi_cfg->operation) != SPI_OP_MODE_MASTER) { LOG_ERR("Slave mode is not supported on %s", dev->name); return -EINVAL; } if (spi_cfg->operation & SPI_MODE_LOOP) { LOG_ERR("Loopback mode is not supported"); return -EINVAL; } if (IS_ENABLED(CONFIG_SPI_EXTENDED_MODES) && (spi_cfg->operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) { LOG_ERR("Only single line mode is supported"); return -EINVAL; } if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) { LOG_ERR("Word sizes other than 8 bits are not supported"); return -EINVAL; } if (spi_cfg->frequency < 125000) { LOG_ERR("Frequencies lower than 125 kHz are not supported"); return -EINVAL; } config = dev_config->def_config; config.frequency = get_nrf_spi_frequency(spi_cfg->frequency); config.mode = get_nrf_spi_mode(spi_cfg->operation); config.bit_order = get_nrf_spi_bit_order(spi_cfg->operation); nrf_gpio_pin_write(nrf_spi_sck_pin_get(dev_config->spi.p_reg), spi_cfg->operation & SPI_MODE_CPOL ? 1 : 0); if (dev_data->initialized) { nrfx_spi_uninit(&dev_config->spi); dev_data->initialized = false; } result = nrfx_spi_init(&dev_config->spi, &config, event_handler, dev_data); if (result != NRFX_SUCCESS) { LOG_ERR("Failed to initialize nrfx driver: %08x", result); return -EIO; } dev_data->initialized = true; ctx->config = spi_cfg; return 0; } static void finish_transaction(const struct device *dev, int error) { struct spi_nrfx_data *dev_data = dev->data; struct spi_context *ctx = &dev_data->ctx; LOG_DBG("Transaction finished with status %d", error); spi_context_complete(ctx, dev, error); dev_data->busy = false; } static void transfer_next_chunk(const struct device *dev) { const struct spi_nrfx_config *dev_config = dev->config; struct spi_nrfx_data *dev_data = dev->data; struct spi_context *ctx = &dev_data->ctx; int error = 0; size_t chunk_len = spi_context_max_continuous_chunk(ctx); if (chunk_len > 0) { nrfx_spi_xfer_desc_t xfer; nrfx_err_t result; dev_data->chunk_len = chunk_len; xfer.p_tx_buffer = ctx->tx_buf; xfer.tx_length = spi_context_tx_buf_on(ctx) ? chunk_len : 0; xfer.p_rx_buffer = ctx->rx_buf; xfer.rx_length = spi_context_rx_buf_on(ctx) ? chunk_len : 0; result = nrfx_spi_xfer(&dev_config->spi, &xfer, 0); if (result == NRFX_SUCCESS) { return; } error = -EIO; } finish_transaction(dev, error); } static void event_handler(const nrfx_spi_evt_t *p_event, void *p_context) { struct spi_nrfx_data *dev_data = p_context; if (p_event->type == NRFX_SPI_EVENT_DONE) { /* Chunk length is set to 0 when a transaction is aborted * due to a timeout. */ if (dev_data->chunk_len == 0) { finish_transaction(dev_data->dev, -ETIMEDOUT); return; } spi_context_update_tx(&dev_data->ctx, 1, dev_data->chunk_len); spi_context_update_rx(&dev_data->ctx, 1, dev_data->chunk_len); transfer_next_chunk(dev_data->dev); } } static int transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; int error; spi_context_lock(&dev_data->ctx, asynchronous, cb, userdata, spi_cfg); error = configure(dev, spi_cfg); if (error == 0) { dev_data->busy = true; if (dev_config->wake_pin != WAKE_PIN_NOT_USED) { error = spi_nrfx_wake_request(&dev_config->wake_gpiote, dev_config->wake_pin); if (error == -ETIMEDOUT) { LOG_WRN("Waiting for WAKE acknowledgment timed out"); /* If timeout occurs, try to perform the transfer * anyway, just in case the slave device was unable * to signal that it was already awaken and prepared * for the transfer. */ } } spi_context_buffers_setup(&dev_data->ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(&dev_data->ctx, true); transfer_next_chunk(dev); error = spi_context_wait_for_completion(&dev_data->ctx); if (error == -ETIMEDOUT) { /* Set the chunk length to 0 so that event_handler() * knows that the transaction timed out and is to be * aborted. */ dev_data->chunk_len = 0; /* Abort the current transfer by deinitializing * the nrfx driver. */ nrfx_spi_uninit(&dev_config->spi); dev_data->initialized = false; /* Make sure the transaction is finished (it may be * already finished if it actually did complete before * the nrfx driver was deinitialized). */ finish_transaction(dev, -ETIMEDOUT); /* Clean up the driver state. */ k_sem_reset(&dev_data->ctx.sync); } spi_context_cs_control(&dev_data->ctx, false); } spi_context_release(&dev_data->ctx, error); return error; } static int spi_nrfx_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_nrfx_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); } #endif /* CONFIG_SPI_ASYNC */ static int spi_nrfx_release(const struct device *dev, const struct spi_config *spi_cfg) { struct spi_nrfx_data *dev_data = dev->data; if (!spi_context_configured(&dev_data->ctx, spi_cfg)) { return -EINVAL; } if (dev_data->busy) { return -EBUSY; } spi_context_unlock_unconditionally(&dev_data->ctx); return 0; } static const struct spi_driver_api spi_nrfx_driver_api = { .transceive = spi_nrfx_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_nrfx_transceive_async, #endif .release = spi_nrfx_release, }; #ifdef CONFIG_PM_DEVICE static int spi_nrfx_pm_action(const struct device *dev, enum pm_device_action action) { int ret = 0; struct spi_nrfx_data *dev_data = dev->data; const struct spi_nrfx_config *dev_config = dev->config; switch (action) { case PM_DEVICE_ACTION_RESUME: ret = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } /* nrfx_spi_init() will be called at configuration before * the next transfer. */ break; case PM_DEVICE_ACTION_SUSPEND: if (dev_data->initialized) { nrfx_spi_uninit(&dev_config->spi); dev_data->initialized = false; } ret = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_SLEEP); if (ret < 0) { return ret; } break; default: ret = -ENOTSUP; } return ret; } #endif /* CONFIG_PM_DEVICE */ static int spi_nrfx_init(const struct device *dev) { const struct spi_nrfx_config *dev_config = dev->config; struct spi_nrfx_data *dev_data = dev->data; int err; err = pinctrl_apply_state(dev_config->pcfg, PINCTRL_STATE_DEFAULT); if (err < 0) { return err; } if (dev_config->wake_pin != WAKE_PIN_NOT_USED) { err = spi_nrfx_wake_init(&dev_config->wake_gpiote, dev_config->wake_pin); if (err == -ENODEV) { LOG_ERR("Failed to allocate GPIOTE channel for WAKE"); return err; } if (err == -EIO) { LOG_ERR("Failed to configure WAKE pin"); return err; } } dev_config->irq_connect(); err = spi_context_cs_configure_all(&dev_data->ctx); if (err < 0) { return err; } spi_context_unlock_unconditionally(&dev_data->ctx); return 0; } /* * Current factors requiring use of DT_NODELABEL: * * - HAL design (requirement of drv_inst_idx in nrfx_spi_t) * - Name-based HAL IRQ handlers, e.g. nrfx_spi_0_irq_handler */ #define SPI(idx) DT_NODELABEL(spi##idx) #define SPI_PROP(idx, prop) DT_PROP(SPI(idx), prop) #define SPI_NRFX_SPI_DEFINE(idx) \ NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(SPI(idx)); \ static void irq_connect##idx(void) \ { \ IRQ_CONNECT(DT_IRQN(SPI(idx)), DT_IRQ(SPI(idx), priority), \ nrfx_isr, nrfx_spi_##idx##_irq_handler, 0); \ } \ static struct spi_nrfx_data spi_##idx##_data = { \ SPI_CONTEXT_INIT_LOCK(spi_##idx##_data, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_##idx##_data, ctx), \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(SPI(idx), ctx) \ .dev = DEVICE_DT_GET(SPI(idx)), \ .busy = false, \ }; \ PINCTRL_DT_DEFINE(SPI(idx)); \ static const struct spi_nrfx_config spi_##idx##z_config = { \ .spi = { \ .p_reg = (NRF_SPI_Type *)DT_REG_ADDR(SPI(idx)), \ .drv_inst_idx = NRFX_SPI##idx##_INST_IDX, \ }, \ .def_config = { \ .skip_gpio_cfg = true, \ .skip_psel_cfg = true, \ .ss_pin = NRFX_SPI_PIN_NOT_USED, \ .orc = SPI_PROP(idx, overrun_character), \ }, \ .irq_connect = irq_connect##idx, \ .pcfg = PINCTRL_DT_DEV_CONFIG_GET(SPI(idx)), \ .wake_pin = NRF_DT_GPIOS_TO_PSEL_OR(SPI(idx), wake_gpios, \ WAKE_PIN_NOT_USED), \ .wake_gpiote = WAKE_GPIOTE_INSTANCE(SPI(idx)), \ }; \ BUILD_ASSERT(!DT_NODE_HAS_PROP(SPI(idx), wake_gpios) || \ !(DT_GPIO_FLAGS(SPI(idx), wake_gpios) & GPIO_ACTIVE_LOW), \ "WAKE line must be configured as active high"); \ PM_DEVICE_DT_DEFINE(SPI(idx), spi_nrfx_pm_action); \ DEVICE_DT_DEFINE(SPI(idx), \ spi_nrfx_init, \ PM_DEVICE_DT_GET(SPI(idx)), \ &spi_##idx##_data, \ &spi_##idx##z_config, \ POST_KERNEL, CONFIG_SPI_INIT_PRIORITY, \ &spi_nrfx_driver_api) #ifdef CONFIG_HAS_HW_NRF_SPI0 SPI_NRFX_SPI_DEFINE(0); #endif #ifdef CONFIG_HAS_HW_NRF_SPI1 SPI_NRFX_SPI_DEFINE(1); #endif #ifdef CONFIG_HAS_HW_NRF_SPI2 SPI_NRFX_SPI_DEFINE(2); #endif