/* * Copyright (c) 2018 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT st_stm32_i2s #include #include #include #include #include #include #include #include #include #include #include #include "i2s_ll_stm32.h" #include #include LOG_MODULE_REGISTER(i2s_ll_stm32); #define MODULO_INC(val, max) { val = (++val < max) ? val : 0; } static unsigned int div_round_closest(uint32_t dividend, uint32_t divisor) { return (dividend + (divisor / 2U)) / divisor; } static bool queue_is_empty(struct ring_buf *rb) { unsigned int key; key = irq_lock(); if (rb->tail != rb->head) { /* Ring buffer is not empty */ irq_unlock(key); return false; } irq_unlock(key); return true; } /* * Get data from the queue */ static int queue_get(struct ring_buf *rb, void **mem_block, size_t *size) { unsigned int key; key = irq_lock(); if (queue_is_empty(rb) == true) { irq_unlock(key); return -ENOMEM; } *mem_block = rb->buf[rb->tail].mem_block; *size = rb->buf[rb->tail].size; MODULO_INC(rb->tail, rb->len); irq_unlock(key); return 0; } /* * Put data in the queue */ static int queue_put(struct ring_buf *rb, void *mem_block, size_t size) { uint16_t head_next; unsigned int key; key = irq_lock(); head_next = rb->head; MODULO_INC(head_next, rb->len); if (head_next == rb->tail) { /* Ring buffer is full */ irq_unlock(key); return -ENOMEM; } rb->buf[rb->head].mem_block = mem_block; rb->buf[rb->head].size = size; rb->head = head_next; irq_unlock(key); return 0; } static int i2s_stm32_enable_clock(const struct device *dev) { const struct i2s_stm32_cfg *cfg = dev->config; const struct device *clk; int ret; clk = DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE); if (!device_is_ready(clk)) { LOG_ERR("clock control device not ready"); return -ENODEV; } ret = clock_control_on(clk, (clock_control_subsys_t)&cfg->pclken[0]); if (ret != 0) { LOG_ERR("Could not enable I2S clock"); return -EIO; } if (cfg->pclk_len > 1) { /* Enable I2S clock source */ ret = clock_control_configure(clk, (clock_control_subsys_t)&cfg->pclken[1], NULL); if (ret < 0) { LOG_ERR("Could not configure I2S domain clock"); return -EIO; } } return 0; } static int i2s_stm32_set_clock(const struct device *dev, uint32_t bit_clk_freq) { const struct i2s_stm32_cfg *cfg = dev->config; uint32_t freq_in = 0U; uint8_t i2s_div, i2s_odd; if (cfg->pclk_len > 1) { if (clock_control_get_rate(DEVICE_DT_GET(STM32_CLOCK_CONTROL_NODE), (clock_control_subsys_t)&cfg->pclken[1], &freq_in) < 0) { LOG_ERR("Failed call clock_control_get_rate(pclken[1])"); return -EIO; } } /* * The ratio between input clock (I2SxClk) and output * clock on the pad (I2S_CK) is obtained using the * following formula: * (i2s_div * 2) + i2s_odd */ i2s_div = div_round_closest(freq_in, bit_clk_freq); i2s_odd = (i2s_div & 0x1) ? 1 : 0; i2s_div >>= 1; /* i2s_div == 0 || i2s_div == 1 are forbidden */ if (i2s_div < 2U) { LOG_ERR("The linear prescaler value is unsupported"); return -EINVAL; } LOG_DBG("i2s_div: %d - i2s_odd: %d", i2s_div, i2s_odd); LL_I2S_SetPrescalerLinear(cfg->i2s, i2s_div); LL_I2S_SetPrescalerParity(cfg->i2s, i2s_odd); return 0; } static int i2s_stm32_configure(const struct device *dev, enum i2s_dir dir, const struct i2s_config *i2s_cfg) { const struct i2s_stm32_cfg *const cfg = dev->config; struct i2s_stm32_data *const dev_data = dev->data; /* For words greater than 16-bit the channel length is considered 32-bit */ const uint32_t channel_length = i2s_cfg->word_size > 16U ? 32U : 16U; /* * comply with the i2s_config driver remark: * When I2S data format is selected parameter channels is ignored, * number of words in a frame is always 2. */ const uint32_t num_channels = i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK ? 2U : i2s_cfg->channels; struct stream *stream; uint32_t bit_clk_freq; bool enable_mck; int ret; if (dir == I2S_DIR_RX) { stream = &dev_data->rx; } else if (dir == I2S_DIR_TX) { stream = &dev_data->tx; } else if (dir == I2S_DIR_BOTH) { return -ENOSYS; } else { LOG_ERR("Either RX or TX direction must be selected"); return -EINVAL; } if (stream->state != I2S_STATE_NOT_READY && stream->state != I2S_STATE_READY) { LOG_ERR("invalid state"); return -EINVAL; } stream->master = true; if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE || i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) { stream->master = false; } if (i2s_cfg->frame_clk_freq == 0U) { stream->queue_drop(stream); memset(&stream->cfg, 0, sizeof(struct i2s_config)); stream->state = I2S_STATE_NOT_READY; return 0; } memcpy(&stream->cfg, i2s_cfg, sizeof(struct i2s_config)); /* conditions to enable master clock output */ enable_mck = stream->master && cfg->master_clk_sel; /* set I2S bitclock */ bit_clk_freq = i2s_cfg->frame_clk_freq * channel_length * num_channels; if (enable_mck) { /* * Compensate for the master clock dividers. * MCK = N * CK, where N: * 8 when the channel frame is 16-bit wide * 4 when the channel frame is 32-bit wide */ bit_clk_freq *= channel_length == 16U ? 4U * 2U : 4U; } ret = i2s_stm32_set_clock(dev, bit_clk_freq); if (ret < 0) { return ret; } /* set I2S Master Clock output in the MCK pin, enabled in the DT */ if (enable_mck) { LL_I2S_EnableMasterClock(cfg->i2s); } else { LL_I2S_DisableMasterClock(cfg->i2s); } /* * set I2S Data Format * 16-bit data extended on 32-bit channel length excluded */ if (i2s_cfg->word_size == 16U) { LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_16B); } else if (i2s_cfg->word_size == 24U) { LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_24B); } else if (i2s_cfg->word_size == 32U) { LL_I2S_SetDataFormat(cfg->i2s, LL_I2S_DATAFORMAT_32B); } else { LOG_ERR("invalid word size"); return -EINVAL; } /* set I2S Standard */ switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) { case I2S_FMT_DATA_FORMAT_I2S: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PHILIPS); break; case I2S_FMT_DATA_FORMAT_PCM_SHORT: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_SHORT); break; case I2S_FMT_DATA_FORMAT_PCM_LONG: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_PCM_LONG); break; case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_MSB); break; case I2S_FMT_DATA_FORMAT_RIGHT_JUSTIFIED: LL_I2S_SetStandard(cfg->i2s, LL_I2S_STANDARD_LSB); break; default: LOG_ERR("Unsupported I2S data format"); return -EINVAL; } /* set I2S clock polarity */ if ((i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) == I2S_FMT_BIT_CLK_INV) LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_HIGH); else LL_I2S_SetClockPolarity(cfg->i2s, LL_I2S_POLARITY_LOW); stream->state = I2S_STATE_READY; return 0; } static int i2s_stm32_trigger(const struct device *dev, enum i2s_dir dir, enum i2s_trigger_cmd cmd) { struct i2s_stm32_data *const dev_data = dev->data; const struct i2s_stm32_cfg *const cfg = dev->config; struct stream *stream; unsigned int key; int ret; if (dir == I2S_DIR_RX) { stream = &dev_data->rx; } else if (dir == I2S_DIR_TX) { stream = &dev_data->tx; } else if (dir == I2S_DIR_BOTH) { return -ENOSYS; } else { LOG_ERR("Either RX or TX direction must be selected"); return -EINVAL; } switch (cmd) { case I2S_TRIGGER_START: if (stream->state != I2S_STATE_READY) { LOG_ERR("START trigger: invalid state %d", stream->state); return -EIO; } __ASSERT_NO_MSG(stream->mem_block == NULL); ret = stream->stream_start(stream, dev); if (ret < 0) { LOG_ERR("START trigger failed %d", ret); return ret; } stream->state = I2S_STATE_RUNNING; stream->last_block = false; break; case I2S_TRIGGER_STOP: key = irq_lock(); if (stream->state != I2S_STATE_RUNNING) { irq_unlock(key); LOG_ERR("STOP trigger: invalid state"); return -EIO; } do_trigger_stop: if (ll_func_i2s_dma_busy(cfg->i2s)) { stream->state = I2S_STATE_STOPPING; /* * Indicate that the transition to I2S_STATE_STOPPING * is triggered by STOP command */ stream->tx_stop_for_drain = false; } else { stream->stream_disable(stream, dev); stream->state = I2S_STATE_READY; stream->last_block = true; } irq_unlock(key); break; case I2S_TRIGGER_DRAIN: key = irq_lock(); if (stream->state != I2S_STATE_RUNNING) { irq_unlock(key); LOG_ERR("DRAIN trigger: invalid state"); return -EIO; } if (dir == I2S_DIR_TX) { if ((queue_is_empty(&stream->mem_block_queue) == false) || (ll_func_i2s_dma_busy(cfg->i2s))) { stream->state = I2S_STATE_STOPPING; /* * Indicate that the transition to I2S_STATE_STOPPING * is triggered by DRAIN command */ stream->tx_stop_for_drain = true; } else { stream->stream_disable(stream, dev); stream->state = I2S_STATE_READY; } } else if (dir == I2S_DIR_RX) { goto do_trigger_stop; } else { LOG_ERR("Unavailable direction"); return -EINVAL; } irq_unlock(key); break; case I2S_TRIGGER_DROP: if (stream->state == I2S_STATE_NOT_READY) { LOG_ERR("DROP trigger: invalid state"); return -EIO; } stream->stream_disable(stream, dev); stream->queue_drop(stream); stream->state = I2S_STATE_READY; break; case I2S_TRIGGER_PREPARE: if (stream->state != I2S_STATE_ERROR) { LOG_ERR("PREPARE trigger: invalid state"); return -EIO; } stream->state = I2S_STATE_READY; stream->queue_drop(stream); break; default: LOG_ERR("Unsupported trigger command"); return -EINVAL; } return 0; } static int i2s_stm32_read(const struct device *dev, void **mem_block, size_t *size) { struct i2s_stm32_data *const dev_data = dev->data; int ret; if (dev_data->rx.state == I2S_STATE_NOT_READY) { LOG_DBG("invalid state"); return -EIO; } if (dev_data->rx.state != I2S_STATE_ERROR) { ret = k_sem_take(&dev_data->rx.sem, SYS_TIMEOUT_MS(dev_data->rx.cfg.timeout)); if (ret < 0) { return ret; } } /* Get data from the beginning of RX queue */ ret = queue_get(&dev_data->rx.mem_block_queue, mem_block, size); if (ret < 0) { return -EIO; } return 0; } static int i2s_stm32_write(const struct device *dev, void *mem_block, size_t size) { struct i2s_stm32_data *const dev_data = dev->data; int ret; if (dev_data->tx.state != I2S_STATE_RUNNING && dev_data->tx.state != I2S_STATE_READY) { LOG_DBG("invalid state"); return -EIO; } ret = k_sem_take(&dev_data->tx.sem, SYS_TIMEOUT_MS(dev_data->tx.cfg.timeout)); if (ret < 0) { return ret; } /* Add data to the end of the TX queue */ queue_put(&dev_data->tx.mem_block_queue, mem_block, size); return 0; } static const struct i2s_driver_api i2s_stm32_driver_api = { .configure = i2s_stm32_configure, .read = i2s_stm32_read, .write = i2s_stm32_write, .trigger = i2s_stm32_trigger, }; #define STM32_DMA_NUM_CHANNELS 8 static const struct device *active_dma_rx_channel[STM32_DMA_NUM_CHANNELS]; static const struct device *active_dma_tx_channel[STM32_DMA_NUM_CHANNELS]; static int reload_dma(const struct device *dev_dma, uint32_t channel, struct dma_config *dcfg, void *src, void *dst, uint32_t blk_size) { int ret; ret = dma_reload(dev_dma, channel, (uint32_t)src, (uint32_t)dst, blk_size); if (ret < 0) { return ret; } ret = dma_start(dev_dma, channel); return ret; } static int start_dma(const struct device *dev_dma, uint32_t channel, struct dma_config *dcfg, void *src, bool src_addr_increment, void *dst, bool dst_addr_increment, uint8_t fifo_threshold, uint32_t blk_size) { struct dma_block_config blk_cfg; int ret; memset(&blk_cfg, 0, sizeof(blk_cfg)); blk_cfg.block_size = blk_size; blk_cfg.source_address = (uint32_t)src; blk_cfg.dest_address = (uint32_t)dst; if (src_addr_increment) { blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } if (dst_addr_increment) { blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } blk_cfg.fifo_mode_control = fifo_threshold; dcfg->head_block = &blk_cfg; ret = dma_config(dev_dma, channel, dcfg); if (ret < 0) { return ret; } ret = dma_start(dev_dma, channel); return ret; } static const struct device *get_dev_from_rx_dma_channel(uint32_t dma_channel); static const struct device *get_dev_from_tx_dma_channel(uint32_t dma_channel); static void rx_stream_disable(struct stream *stream, const struct device *dev); static void tx_stream_disable(struct stream *stream, const struct device *dev); /* This function is executed in the interrupt context */ static void dma_rx_callback(const struct device *dma_dev, void *arg, uint32_t channel, int status) { const struct device *dev = get_dev_from_rx_dma_channel(channel); const struct i2s_stm32_cfg *cfg = dev->config; struct i2s_stm32_data *const dev_data = dev->data; struct stream *stream = &dev_data->rx; void *mblk_tmp; int ret; if (status < 0) { ret = -EIO; stream->state = I2S_STATE_ERROR; goto rx_disable; } __ASSERT_NO_MSG(stream->mem_block != NULL); /* Stop reception if there was an error */ if (stream->state == I2S_STATE_ERROR) { goto rx_disable; } mblk_tmp = stream->mem_block; /* Prepare to receive the next data block */ ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block, K_NO_WAIT); if (ret < 0) { stream->state = I2S_STATE_ERROR; goto rx_disable; } ret = reload_dma(stream->dev_dma, stream->dma_channel, &stream->dma_cfg, #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) (void *)LL_SPI_DMA_GetRxRegAddr(cfg->i2s), #else (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), #endif stream->mem_block, stream->cfg.block_size); if (ret < 0) { LOG_DBG("Failed to start RX DMA transfer: %d", ret); goto rx_disable; } /* Assure cache coherency after DMA write operation */ sys_cache_data_invd_range(mblk_tmp, stream->cfg.block_size); /* All block data received */ ret = queue_put(&stream->mem_block_queue, mblk_tmp, stream->cfg.block_size); if (ret < 0) { stream->state = I2S_STATE_ERROR; goto rx_disable; } k_sem_give(&stream->sem); /* Stop reception if we were requested */ if (stream->state == I2S_STATE_STOPPING) { stream->state = I2S_STATE_READY; goto rx_disable; } return; rx_disable: rx_stream_disable(stream, dev); } static void dma_tx_callback(const struct device *dma_dev, void *arg, uint32_t channel, int status) { const struct device *dev = get_dev_from_tx_dma_channel(channel); const struct i2s_stm32_cfg *cfg = dev->config; struct i2s_stm32_data *const dev_data = dev->data; struct stream *stream = &dev_data->tx; size_t mem_block_size; int ret; if (status < 0) { ret = -EIO; stream->state = I2S_STATE_ERROR; goto tx_disable; } __ASSERT_NO_MSG(stream->mem_block != NULL); /* All block data sent */ k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block); stream->mem_block = NULL; /* Stop transmission if there was an error */ if (stream->state == I2S_STATE_ERROR) { LOG_ERR("TX error detected"); goto tx_disable; } /* Check if we finished transferring one block and stopping is requested */ if ((stream->state == I2S_STATE_STOPPING) && (status == DMA_STATUS_COMPLETE)) { /* * Check if all tx samples have been completely handled * as stated in zephyr i2s specification, in case of DRAIN command * send all data in the transmit queue and stop the transmission. */ if (queue_is_empty(&stream->mem_block_queue) == true) { stream->queue_drop(stream); stream->state = I2S_STATE_READY; goto tx_disable; } else if (stream->tx_stop_for_drain == false) { /* * In case of STOP command, just stop the transmission * at the current. The transmission can be resumed. */ stream->state = I2S_STATE_READY; goto tx_disable; } /* else: DRAIN trigger -> continue TX normally until queue is empty */ } /* Stop transmission if we were requested */ if (stream->last_block) { stream->state = I2S_STATE_READY; goto tx_disable; } /* Prepare to send the next data block */ ret = queue_get(&stream->mem_block_queue, &stream->mem_block, &mem_block_size); if (ret < 0) { if (stream->state == I2S_STATE_STOPPING) { stream->state = I2S_STATE_READY; } else { stream->state = I2S_STATE_ERROR; } goto tx_disable; } k_sem_give(&stream->sem); /* Assure cache coherency before DMA read operation */ sys_cache_data_flush_range(stream->mem_block, mem_block_size); ret = reload_dma(stream->dev_dma, stream->dma_channel, &stream->dma_cfg, stream->mem_block, #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) (void *)LL_SPI_DMA_GetTxRegAddr(cfg->i2s), #else (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), #endif mem_block_size); if (ret < 0) { LOG_DBG("Failed to start TX DMA transfer: %d", ret); goto tx_disable; } return; tx_disable: tx_stream_disable(stream, dev); } static uint32_t i2s_stm32_irq_count; static uint32_t i2s_stm32_irq_ovr_count; static uint32_t i2s_stm32_irq_udr_count; static void i2s_stm32_isr(const struct device *dev) { const struct i2s_stm32_cfg *cfg = dev->config; /* OVR error must be explicitly cleared */ if (LL_I2S_IsActiveFlag_OVR(cfg->i2s)) { i2s_stm32_irq_ovr_count++; LL_I2S_ClearFlag_OVR(cfg->i2s); } /* NOTE: UDR error must be explicitly cleared on STM32H7 */ if (LL_I2S_IsActiveFlag_UDR(cfg->i2s)) { i2s_stm32_irq_udr_count++; LL_I2S_ClearFlag_UDR(cfg->i2s); } i2s_stm32_irq_count++; } static int i2s_stm32_initialize(const struct device *dev) { const struct i2s_stm32_cfg *cfg = dev->config; struct i2s_stm32_data *const dev_data = dev->data; struct stream *stream = &dev_data->tx; int ret, i; /* Initialize the variable used to handle the TX */ stream->tx_stop_for_drain = false; /* Enable I2S clock propagation */ ret = i2s_stm32_enable_clock(dev); if (ret < 0) { LOG_ERR("%s: clock enabling failed: %d", __func__, ret); return -EIO; } /* Configure dt provided device signals when available */ ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { LOG_ERR("I2S pinctrl setup failed (%d)", ret); return ret; } cfg->irq_config(dev); k_sem_init(&dev_data->rx.sem, 0, CONFIG_I2S_STM32_RX_BLOCK_COUNT); k_sem_init(&dev_data->tx.sem, CONFIG_I2S_STM32_TX_BLOCK_COUNT, CONFIG_I2S_STM32_TX_BLOCK_COUNT); for (i = 0; i < STM32_DMA_NUM_CHANNELS; i++) { active_dma_rx_channel[i] = NULL; active_dma_tx_channel[i] = NULL; } /* Get the binding to the DMA device */ if (!device_is_ready(dev_data->tx.dev_dma)) { LOG_ERR("%s device not ready", dev_data->tx.dev_dma->name); return -ENODEV; } if (!device_is_ready(dev_data->rx.dev_dma)) { LOG_ERR("%s device not ready", dev_data->rx.dev_dma->name); return -ENODEV; } LOG_INF("%s inited", dev->name); return 0; } static int rx_stream_start(struct stream *stream, const struct device *dev) { const struct i2s_stm32_cfg *cfg = dev->config; int ret; ret = k_mem_slab_alloc(stream->cfg.mem_slab, &stream->mem_block, K_NO_WAIT); if (ret < 0) { return ret; } if (stream->master) { LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_RX); } else { LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_RX); } /* remember active RX DMA channel (used in callback) */ active_dma_rx_channel[stream->dma_channel] = dev; ret = start_dma(stream->dev_dma, stream->dma_channel, &stream->dma_cfg, #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) (void *)LL_SPI_DMA_GetRxRegAddr(cfg->i2s), #else (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), #endif stream->src_addr_increment, stream->mem_block, stream->dst_addr_increment, stream->fifo_threshold, stream->cfg.block_size); if (ret < 0) { LOG_ERR("Failed to start RX DMA transfer: %d", ret); return ret; } LL_I2S_EnableDMAReq_RX(cfg->i2s); #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) LL_I2S_EnableIT_OVR(cfg->i2s); LL_I2S_EnableIT_UDR(cfg->i2s); LL_I2S_EnableIT_FRE(cfg->i2s); LL_I2S_Enable(cfg->i2s); LL_SPI_StartMasterTransfer(cfg->i2s); #else LL_I2S_EnableIT_ERR(cfg->i2s); LL_I2S_Enable(cfg->i2s); #endif return 0; } static int tx_stream_start(struct stream *stream, const struct device *dev) { const struct i2s_stm32_cfg *cfg = dev->config; size_t mem_block_size; int ret; ret = queue_get(&stream->mem_block_queue, &stream->mem_block, &mem_block_size); if (ret < 0) { return ret; } k_sem_give(&stream->sem); /* Assure cache coherency before DMA read operation */ sys_cache_data_flush_range(stream->mem_block, mem_block_size); if (stream->master) { LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_MASTER_TX); } else { LL_I2S_SetTransferMode(cfg->i2s, LL_I2S_MODE_SLAVE_TX); } /* remember active TX DMA channel (used in callback) */ active_dma_tx_channel[stream->dma_channel] = dev; ret = start_dma(stream->dev_dma, stream->dma_channel, &stream->dma_cfg, stream->mem_block, stream->src_addr_increment, #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) (void *)LL_SPI_DMA_GetTxRegAddr(cfg->i2s), #else (void *)LL_SPI_DMA_GetRegAddr(cfg->i2s), #endif stream->dst_addr_increment, stream->fifo_threshold, stream->cfg.block_size); if (ret < 0) { LOG_ERR("Failed to start TX DMA transfer: %d", ret); return ret; } LL_I2S_EnableDMAReq_TX(cfg->i2s); #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) LL_I2S_EnableIT_OVR(cfg->i2s); LL_I2S_EnableIT_UDR(cfg->i2s); LL_I2S_EnableIT_FRE(cfg->i2s); LL_I2S_Enable(cfg->i2s); LL_SPI_StartMasterTransfer(cfg->i2s); #else LL_I2S_EnableIT_ERR(cfg->i2s); LL_I2S_Enable(cfg->i2s); #endif return 0; } static void rx_stream_disable(struct stream *stream, const struct device *dev) { const struct i2s_stm32_cfg *cfg = dev->config; LL_I2S_DisableDMAReq_RX(cfg->i2s); #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) LL_I2S_DisableIT_OVR(cfg->i2s); LL_I2S_DisableIT_UDR(cfg->i2s); LL_I2S_DisableIT_FRE(cfg->i2s); #else LL_I2S_DisableIT_ERR(cfg->i2s); #endif dma_stop(stream->dev_dma, stream->dma_channel); if (stream->mem_block != NULL) { k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block); stream->mem_block = NULL; } LL_I2S_Disable(cfg->i2s); active_dma_rx_channel[stream->dma_channel] = NULL; } static void tx_stream_disable(struct stream *stream, const struct device *dev) { const struct i2s_stm32_cfg *cfg = dev->config; LL_I2S_DisableDMAReq_TX(cfg->i2s); #if DT_HAS_COMPAT_STATUS_OKAY(st_stm32h7_i2s) LL_I2S_DisableIT_OVR(cfg->i2s); LL_I2S_DisableIT_UDR(cfg->i2s); LL_I2S_DisableIT_FRE(cfg->i2s); #else LL_I2S_DisableIT_ERR(cfg->i2s); #endif dma_stop(stream->dev_dma, stream->dma_channel); if (stream->mem_block != NULL) { k_mem_slab_free(stream->cfg.mem_slab, stream->mem_block); stream->mem_block = NULL; } /* Wait for TX queue to drain before disabling */ k_busy_wait(100); LL_I2S_Disable(cfg->i2s); active_dma_tx_channel[stream->dma_channel] = NULL; } static void rx_queue_drop(struct stream *stream) { size_t size; void *mem_block; while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) { k_mem_slab_free(stream->cfg.mem_slab, mem_block); } k_sem_reset(&stream->sem); } static void tx_queue_drop(struct stream *stream) { size_t size; void *mem_block; unsigned int n = 0U; while (queue_get(&stream->mem_block_queue, &mem_block, &size) == 0) { k_mem_slab_free(stream->cfg.mem_slab, mem_block); n++; } for (; n > 0; n--) { k_sem_give(&stream->sem); } } static const struct device *get_dev_from_rx_dma_channel(uint32_t dma_channel) { return active_dma_rx_channel[dma_channel]; } static const struct device *get_dev_from_tx_dma_channel(uint32_t dma_channel) { return active_dma_tx_channel[dma_channel]; } /* src_dev and dest_dev should be 'MEMORY' or 'PERIPHERAL'. */ #define I2S_DMA_CHANNEL_INIT(index, dir, dir_cap, src_dev, dest_dev) \ .dir = { \ .dev_dma = DEVICE_DT_GET(STM32_DMA_CTLR(index, dir)), \ .dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ .dma_cfg = { \ .block_count = 2, \ .dma_slot = STM32_DMA_SLOT(index, dir, slot),\ .channel_direction = src_dev##_TO_##dest_dev, \ .source_data_size = 2, /* 16bit default */ \ .dest_data_size = 2, /* 16bit default */ \ .source_burst_length = 1, /* SINGLE transfer */ \ .dest_burst_length = 1, \ .channel_priority = STM32_DMA_CONFIG_PRIORITY( \ STM32_DMA_CHANNEL_CONFIG(index, dir)),\ .dma_callback = dma_##dir##_callback, \ }, \ .src_addr_increment = STM32_DMA_CONFIG_##src_dev##_ADDR_INC( \ STM32_DMA_CHANNEL_CONFIG(index, dir)), \ .dst_addr_increment = STM32_DMA_CONFIG_##dest_dev##_ADDR_INC( \ STM32_DMA_CHANNEL_CONFIG(index, dir)), \ .fifo_threshold = STM32_DMA_FEATURES_FIFO_THRESHOLD( \ STM32_DMA_FEATURES(index, dir)), \ .stream_start = dir##_stream_start, \ .stream_disable = dir##_stream_disable, \ .queue_drop = dir##_queue_drop, \ .mem_block_queue.buf = dir##_##index##_ring_buf, \ .mem_block_queue.len = ARRAY_SIZE(dir##_##index##_ring_buf) \ } #define I2S_STM32_INIT(index) \ \ static void i2s_stm32_irq_config_func_##index(const struct device *dev);\ \ PINCTRL_DT_INST_DEFINE(index); \ \ static const struct stm32_pclken clk_##index[] = \ STM32_DT_INST_CLOCKS(index); \ \ static const struct i2s_stm32_cfg i2s_stm32_config_##index = { \ .i2s = (SPI_TypeDef *)DT_INST_REG_ADDR(index), \ .pclken = clk_##index, \ .pclk_len = DT_INST_NUM_CLOCKS(index), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ .irq_config = i2s_stm32_irq_config_func_##index, \ .master_clk_sel = DT_INST_PROP(index, mck_enabled) \ }; \ \ struct queue_item rx_##index##_ring_buf[CONFIG_I2S_STM32_RX_BLOCK_COUNT + 1];\ struct queue_item tx_##index##_ring_buf[CONFIG_I2S_STM32_TX_BLOCK_COUNT + 1];\ \ static struct i2s_stm32_data i2s_stm32_data_##index = { \ UTIL_AND(DT_INST_DMAS_HAS_NAME(index, rx), \ I2S_DMA_CHANNEL_INIT(index, rx, RX, PERIPHERAL, MEMORY)),\ UTIL_AND(DT_INST_DMAS_HAS_NAME(index, tx), \ I2S_DMA_CHANNEL_INIT(index, tx, TX, MEMORY, PERIPHERAL)),\ }; \ DEVICE_DT_INST_DEFINE(index, \ &i2s_stm32_initialize, NULL, \ &i2s_stm32_data_##index, \ &i2s_stm32_config_##index, POST_KERNEL, \ CONFIG_I2S_INIT_PRIORITY, &i2s_stm32_driver_api); \ \ static void i2s_stm32_irq_config_func_##index(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(index), \ DT_INST_IRQ(index, priority), \ i2s_stm32_isr, DEVICE_DT_INST_GET(index), 0); \ irq_enable(DT_INST_IRQN(index)); \ } DT_INST_FOREACH_STATUS_OKAY(I2S_STM32_INIT)