/* * Driver for Synopsys DesignWare MAC * * Copyright (c) 2021 BayLibre SAS * * SPDX-License-Identifier: Apache-2.0 */ #define LOG_MODULE_NAME dwmac_core #define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL #include LOG_MODULE_REGISTER(LOG_MODULE_NAME); #include #include #include #include #include #include #include "eth_dwmac_priv.h" #include "eth.h" /* * This driver references network data fragments with a zero-copy approach. * Even though the hardware can store received packets with an arbitrary * offset in memory, the gap bytes in the first word will be overwritten, * and subsequent fragments have to be buswidth-aligned anyway. * This means CONFIG_NET_BUF_VARIABLE_DATA_SIZE requires special care due * to its refcount byte placement, so we take the easy way out for now. */ #ifdef CONFIG_NET_BUF_VARIABLE_DATA_SIZE #error "CONFIG_NET_BUF_VARIABLE_DATA_SIZE=y is not supported" #endif /* size of pre-allocated packet fragments */ #define RX_FRAG_SIZE CONFIG_NET_BUF_DATA_SIZE /* * Grace period to wait for TX descriptor/fragment availability. * Worst case estimate is 1514*8 bits at 10 mbps for an existing packet * to be sent and freed, therefore 1ms is far more than enough. * Beyond that we'll drop the packet. */ #define TX_AVAIL_WAIT K_MSEC(1) /* descriptor index iterators */ #define INC_WRAP(idx, size) ({ idx = (idx + 1) % size; }) #define DEC_WRAP(idx, size) ({ idx = (idx + size - 1) % size; }) /* * Descriptor physical location . * MMU is special here as we have a separate uncached mapping that is * different from the normal RAM virt_to_phys mapping. */ #ifdef CONFIG_MMU #define TXDESC_PHYS_H(idx) hi32(p->tx_descs_phys + (idx) * sizeof(struct dwmac_dma_desc)) #define TXDESC_PHYS_L(idx) lo32(p->tx_descs_phys + (idx) * sizeof(struct dwmac_dma_desc)) #define RXDESC_PHYS_H(idx) hi32(p->rx_descs_phys + (idx) * sizeof(struct dwmac_dma_desc)) #define RXDESC_PHYS_L(idx) lo32(p->rx_descs_phys + (idx) * sizeof(struct dwmac_dma_desc)) #else #define TXDESC_PHYS_H(idx) phys_hi32(&p->tx_descs[idx]) #define TXDESC_PHYS_L(idx) phys_lo32(&p->tx_descs[idx]) #define RXDESC_PHYS_H(idx) phys_hi32(&p->rx_descs[idx]) #define RXDESC_PHYS_L(idx) phys_lo32(&p->rx_descs[idx]) #endif static inline uint32_t hi32(uintptr_t val) { /* trickery to avoid compiler warnings on 32-bit build targets */ if (sizeof(uintptr_t) > 4) { uint64_t hi = val; return hi >> 32; } return 0; } static inline uint32_t lo32(uintptr_t val) { /* just a typecast return to be symmetric with hi32() */ return val; } static inline uint32_t phys_hi32(void *addr) { /* the default 1:1 mapping is assumed */ return hi32((uintptr_t)addr); } static inline uint32_t phys_lo32(void *addr) { /* the default 1:1 mapping is assumed */ return lo32((uintptr_t)addr); } static enum ethernet_hw_caps dwmac_caps(const struct device *dev) { struct dwmac_priv *p = dev->data; enum ethernet_hw_caps caps = 0; if (p->feature0 & MAC_HW_FEATURE0_GMIISEL) { caps |= ETHERNET_LINK_1000BASE_T; } if (p->feature0 & MAC_HW_FEATURE0_MIISEL) { caps |= ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T; } caps |= ETHERNET_PROMISC_MODE; return caps; } /* for debug logs */ static inline int net_pkt_get_nbfrags(struct net_pkt *pkt) { struct net_buf *frag; int nbfrags = 0; for (frag = pkt->buffer; frag; frag = frag->frags) { nbfrags++; } return nbfrags; } static int dwmac_send(const struct device *dev, struct net_pkt *pkt) { struct dwmac_priv *p = dev->data; struct net_buf *frag, *pinned; unsigned int pkt_len = net_pkt_get_len(pkt); unsigned int d_idx; struct dwmac_dma_desc *d; uint32_t des2_flags, des3_flags; LOG_DBG("pkt len/frags=%d/%d", pkt_len, net_pkt_get_nbfrags(pkt)); /* initial flag values */ des2_flags = 0; des3_flags = TDES3_FD | TDES3_OWN; /* map packet fragments */ d_idx = p->tx_desc_head; frag = pkt->buffer; do { LOG_DBG("desc sem/head/tail=%d/%d/%d", k_sem_count_get(&p->free_tx_descs), p->tx_desc_head, p->tx_desc_tail); /* reserve a free descriptor for this fragment */ if (k_sem_take(&p->free_tx_descs, TX_AVAIL_WAIT) != 0) { LOG_DBG("no more free tx descriptors"); goto abort; } /* pin this fragment */ pinned = net_buf_clone(frag, TX_AVAIL_WAIT); if (!pinned) { LOG_DBG("net_buf_clone() returned NULL"); k_sem_give(&p->free_tx_descs); goto abort; } sys_cache_data_flush_range(pinned->data, pinned->len); p->tx_frags[d_idx] = pinned; LOG_DBG("d[%d]: frag %p pinned %p len %d", d_idx, frag->data, pinned->data, pinned->len); /* if no more fragments after this one: */ if (!frag->frags) { /* set those flags on the last descriptor */ des2_flags |= TDES2_IOC; des3_flags |= TDES3_LD; } /* fill the descriptor */ d = &p->tx_descs[d_idx]; d->des0 = phys_lo32(pinned->data); d->des1 = phys_hi32(pinned->data); d->des2 = pinned->len | des2_flags; d->des3 = pkt_len | des3_flags; /* clear the FD flag on subsequent descriptors */ des3_flags &= ~TDES3_FD; INC_WRAP(d_idx, NB_TX_DESCS); frag = frag->frags; } while (frag); /* make sure all the above made it to memory */ barrier_dmem_fence_full(); /* update the descriptor index head */ p->tx_desc_head = d_idx; /* lastly notify the hardware */ REG_WRITE(DMA_CHn_TXDESC_TAIL_PTR(0), TXDESC_PHYS_L(d_idx)); return 0; abort: while (d_idx != p->tx_desc_head) { /* release already pinned fragments */ DEC_WRAP(d_idx, NB_TX_DESCS); frag = p->tx_frags[d_idx]; net_pkt_frag_unref(frag); k_sem_give(&p->free_tx_descs); } return -ENOMEM; } static void dwmac_tx_release(struct dwmac_priv *p) { unsigned int d_idx; struct dwmac_dma_desc *d; struct net_buf *frag; uint32_t des3_val; for (d_idx = p->tx_desc_tail; d_idx != p->tx_desc_head; INC_WRAP(d_idx, NB_TX_DESCS), k_sem_give(&p->free_tx_descs)) { LOG_DBG("desc sem/tail/head=%d/%d/%d", k_sem_count_get(&p->free_tx_descs), p->tx_desc_tail, p->tx_desc_head); d = &p->tx_descs[d_idx]; des3_val = d->des3; LOG_DBG("TDES3[%d] = 0x%08x", d_idx, des3_val); /* stop here if hardware still owns it */ if (des3_val & TDES3_OWN) { break; } /* release corresponding fragments */ frag = p->tx_frags[d_idx]; LOG_DBG("unref frag %p", frag->data); net_pkt_frag_unref(frag); /* last packet descriptor: */ if (des3_val & TDES3_LD) { /* log any errors */ if (des3_val & TDES3_ES) { LOG_ERR("tx error (DES3 = 0x%08x)", des3_val); eth_stats_update_errors_tx(p->iface); } } } p->tx_desc_tail = d_idx; } static void dwmac_receive(struct dwmac_priv *p) { struct dwmac_dma_desc *d; struct net_buf *frag; unsigned int d_idx, bytes_so_far; uint32_t des3_val; for (d_idx = p->rx_desc_tail; d_idx != p->rx_desc_head; INC_WRAP(d_idx, NB_RX_DESCS), k_sem_give(&p->free_rx_descs)) { LOG_DBG("desc sem/tail/head=%d/%d/%d", k_sem_count_get(&p->free_rx_descs), d_idx, p->rx_desc_head); d = &p->rx_descs[d_idx]; des3_val = d->des3; LOG_DBG("RDES3[%d] = 0x%08x", d_idx, des3_val); /* stop here if hardware still owns it */ if (des3_val & RDES3_OWN) { break; } /* we ignore those for now */ if (des3_val & RDES3_CTXT) { continue; } /* a packet's first descriptor: */ if (des3_val & RDES3_FD) { p->rx_bytes = 0; if (p->rx_pkt) { LOG_ERR("d[%d] first desc but pkt exists", d_idx); eth_stats_update_errors_rx(p->iface); net_pkt_unref(p->rx_pkt); } p->rx_pkt = net_pkt_rx_alloc_on_iface(p->iface, K_NO_WAIT); if (!p->rx_pkt) { LOG_ERR("net_pkt_rx_alloc_on_iface() failed"); eth_stats_update_errors_rx(p->iface); } } if (!p->rx_pkt) { LOG_ERR("no rx_pkt: skipping desc %d", d_idx); continue; } /* retrieve current fragment */ frag = p->rx_frags[d_idx]; p->rx_frags[d_idx] = NULL; bytes_so_far = FIELD_GET(RDES3_PL, des3_val); frag->len = bytes_so_far - p->rx_bytes; p->rx_bytes = bytes_so_far; net_pkt_frag_add(p->rx_pkt, frag); /* last descriptor: */ if (des3_val & RDES3_LD) { /* submit packet if no errors */ if (!(des3_val & RDES3_ES)) { LOG_DBG("pkt len/frags=%zd/%d", net_pkt_get_len(p->rx_pkt), net_pkt_get_nbfrags(p->rx_pkt)); net_recv_data(p->iface, p->rx_pkt); } else { LOG_ERR("rx error (DES3 = 0x%08x)", des3_val); eth_stats_update_errors_rx(p->iface); net_pkt_unref(p->rx_pkt); } p->rx_pkt = NULL; } } p->rx_desc_tail = d_idx; } static void dwmac_rx_refill_thread(void *arg1, void *unused1, void *unused2) { struct dwmac_priv *p = arg1; struct dwmac_dma_desc *d; struct net_buf *frag; unsigned int d_idx; ARG_UNUSED(unused1); ARG_UNUSED(unused2); d_idx = p->rx_desc_head; for (;;) { LOG_DBG("desc sem/head/tail=%d/%d/%d", k_sem_count_get(&p->free_rx_descs), p->rx_desc_head, p->rx_desc_tail); /* wait for an empty descriptor */ if (k_sem_take(&p->free_rx_descs, K_FOREVER) != 0) { LOG_ERR("can't get free RX desc to refill"); break; } d = &p->rx_descs[d_idx]; __ASSERT(!(d->des3 & RDES3_OWN), "desc[%d]=0x%x: still hw owned! (sem/head/tail=%d/%d/%d)", d_idx, d->des3, k_sem_count_get(&p->free_rx_descs), p->rx_desc_head, p->rx_desc_tail); frag = p->rx_frags[d_idx]; /* get a new fragment if the previous one was consumed */ if (!frag) { frag = net_pkt_get_reserve_rx_data(RX_FRAG_SIZE, K_FOREVER); if (!frag) { LOG_ERR("net_pkt_get_reserve_rx_data() returned NULL"); k_sem_give(&p->free_rx_descs); break; } LOG_DBG("new frag[%d] at %p", d_idx, frag->data); __ASSERT(frag->size == RX_FRAG_SIZE, ""); sys_cache_data_invd_range(frag->data, frag->size); p->rx_frags[d_idx] = frag; } else { LOG_DBG("reusing frag[%d] at %p", d_idx, frag->data); } /* all is good: initialize the descriptor */ d->des0 = phys_lo32(frag->data); d->des1 = phys_hi32(frag->data); d->des2 = 0; d->des3 = RDES3_BUF1V | RDES3_IOC | RDES3_OWN; /* commit the above to memory */ barrier_dmem_fence_full(); /* advance to the next descriptor */ p->rx_desc_head = INC_WRAP(d_idx, NB_RX_DESCS); /* lastly notify the hardware */ REG_WRITE(DMA_CHn_RXDESC_TAIL_PTR(0), RXDESC_PHYS_L(d_idx)); } } static void dwmac_dma_irq(struct dwmac_priv *p, unsigned int ch) { uint32_t status; status = REG_READ(DMA_CHn_STATUS(ch)); LOG_DBG("DMA_CHn_STATUS(%d) = 0x%08x", ch, status); REG_WRITE(DMA_CHn_STATUS(ch), status); __ASSERT(ch == 0, "only one DMA channel is currently supported"); if (status & DMA_CHn_STATUS_AIS) { LOG_ERR("Abnormal Interrupt Status received (0x%x)", status); } if (status & DMA_CHn_STATUS_TI) { dwmac_tx_release(p); } if (status & DMA_CHn_STATUS_RI) { dwmac_receive(p); } } static void dwmac_mac_irq(struct dwmac_priv *p) { uint32_t status; status = REG_READ(MAC_IRQ_STATUS); LOG_DBG("MAC_IRQ_STATUS = 0x%08x", status); __ASSERT(false, "unimplemented"); } static void dwmac_mtl_irq(struct dwmac_priv *p) { uint32_t status; status = REG_READ(MTL_IRQ_STATUS); LOG_DBG("MTL_IRQ_STATUS = 0x%08x", status); __ASSERT(false, "unimplemented"); } void dwmac_isr(const struct device *ddev) { struct dwmac_priv *p = ddev->data; uint32_t irq_status; unsigned int ch; irq_status = REG_READ(DMA_IRQ_STATUS); LOG_DBG("DMA_IRQ_STATUS = 0x%08x", irq_status); while (irq_status & 0xff) { ch = find_lsb_set(irq_status & 0xff) - 1; irq_status &= ~BIT(ch); dwmac_dma_irq(p, ch); } if (irq_status & DMA_IRQ_STATUS_MTLIS) { dwmac_mtl_irq(p); } if (irq_status & DMA_IRQ_STATUS_MACIS) { dwmac_mac_irq(p); } } static void dwmac_set_mac_addr(struct dwmac_priv *p, uint8_t *addr, int n) { uint32_t reg_val; reg_val = (addr[5] << 8) | addr[4]; REG_WRITE(MAC_ADDRESS_HIGH(n), reg_val | MAC_ADDRESS_HIGH_AE); reg_val = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0]; REG_WRITE(MAC_ADDRESS_LOW(n), reg_val); } static int dwmac_set_config(const struct device *dev, enum ethernet_config_type type, const struct ethernet_config *config) { struct dwmac_priv *p = dev->data; uint32_t reg_val; int ret = 0; (void) reg_val; /* silence the "unused variable" warning */ switch (type) { case ETHERNET_CONFIG_TYPE_MAC_ADDRESS: memcpy(p->mac_addr, config->mac_address.addr, sizeof(p->mac_addr)); dwmac_set_mac_addr(p, p->mac_addr, 0); net_if_set_link_addr(p->iface, p->mac_addr, sizeof(p->mac_addr), NET_LINK_ETHERNET); break; #if defined(CONFIG_NET_PROMISCUOUS_MODE) case ETHERNET_CONFIG_TYPE_PROMISC_MODE: reg_val = REG_READ(MAC_PKT_FILTER); if (config->promisc_mode && !(reg_val & MAC_PKT_FILTER_PR)) { REG_WRITE(MAC_PKT_FILTER, reg_val | MAC_PKT_FILTER_PR); } else if (!config->promisc_mode && (reg_val & MAC_PKT_FILTER_PR)) { REG_WRITE(MAC_PKT_FILTER, reg_val & ~MAC_PKT_FILTER_PR); } else { ret = -EALREADY; } break; #endif default: ret = -ENOTSUP; break; } return ret; } static void dwmac_iface_init(struct net_if *iface) { struct dwmac_priv *p = net_if_get_device(iface)->data; uint32_t reg_val; __ASSERT(!p->iface, "interface already initialized?"); p->iface = iface; ethernet_init(iface); net_if_set_link_addr(iface, p->mac_addr, sizeof(p->mac_addr), NET_LINK_ETHERNET); dwmac_set_mac_addr(p, p->mac_addr, 0); /* * Semaphores are used to represent number of available descriptors. * The total is one less than ring size in order to always have * at least one inactive slot for the hardware tail pointer to * stop at and to prevent our head indexes from looping back * onto our tail indexes. */ k_sem_init(&p->free_tx_descs, NB_TX_DESCS - 1, NB_TX_DESCS - 1); k_sem_init(&p->free_rx_descs, NB_RX_DESCS - 1, NB_RX_DESCS - 1); /* set up RX buffer refill thread */ k_thread_create(&p->rx_refill_thread, p->rx_refill_thread_stack, K_KERNEL_STACK_SIZEOF(p->rx_refill_thread_stack), dwmac_rx_refill_thread, p, NULL, NULL, 0, K_PRIO_PREEMPT(0), K_NO_WAIT); k_thread_name_set(&p->rx_refill_thread, "dwmac_rx_refill"); /* start up TX/RX */ reg_val = REG_READ(DMA_CHn_TX_CTRL(0)); REG_WRITE(DMA_CHn_TX_CTRL(0), reg_val | DMA_CHn_TX_CTRL_St); reg_val = REG_READ(DMA_CHn_RX_CTRL(0)); REG_WRITE(DMA_CHn_RX_CTRL(0), reg_val | DMA_CHn_RX_CTRL_SR); reg_val = REG_READ(MAC_CONF); reg_val |= MAC_CONF_CST | MAC_CONF_TE | MAC_CONF_RE; REG_WRITE(MAC_CONF, reg_val); /* unmask IRQs */ REG_WRITE(DMA_CHn_IRQ_ENABLE(0), DMA_CHn_IRQ_ENABLE_TIE | DMA_CHn_IRQ_ENABLE_RIE | DMA_CHn_IRQ_ENABLE_NIE | DMA_CHn_IRQ_ENABLE_FBEE | DMA_CHn_IRQ_ENABLE_CDEE | DMA_CHn_IRQ_ENABLE_AIE); LOG_DBG("done"); } int dwmac_probe(const struct device *dev) { struct dwmac_priv *p = dev->data; int ret; uint32_t reg_val; k_timepoint_t timeout; ret = dwmac_bus_init(p); if (ret != 0) { return ret; } reg_val = REG_READ(MAC_VERSION); LOG_INF("HW version %u.%u0", (reg_val >> 4) & 0xf, reg_val & 0xf); __ASSERT(FIELD_GET(MAC_VERSION_SNPSVER, reg_val) >= 0x40, "This driver expects DWC-ETHERNET version >= 4.00"); /* resets all of the MAC internal registers and logic */ REG_WRITE(DMA_MODE, DMA_MODE_SWR); timeout = sys_timepoint_calc(K_MSEC(100)); while (REG_READ(DMA_MODE) & DMA_MODE_SWR) { if (sys_timepoint_expired(timeout)) { LOG_ERR("unable to reset hardware"); return -EIO; } } /* get configured hardware features */ p->feature0 = REG_READ(MAC_HW_FEATURE0); p->feature1 = REG_READ(MAC_HW_FEATURE1); p->feature2 = REG_READ(MAC_HW_FEATURE2); p->feature3 = REG_READ(MAC_HW_FEATURE3); LOG_DBG("hw_feature: 0x%08x 0x%08x 0x%08x 0x%08x", p->feature0, p->feature1, p->feature2, p->feature3); dwmac_platform_init(p); memset(p->tx_descs, 0, NB_TX_DESCS * sizeof(struct dwmac_dma_desc)); memset(p->rx_descs, 0, NB_RX_DESCS * sizeof(struct dwmac_dma_desc)); /* set up DMA */ REG_WRITE(DMA_CHn_TX_CTRL(0), 0); REG_WRITE(DMA_CHn_RX_CTRL(0), FIELD_PREP(DMA_CHn_RX_CTRL_PBL, 32) | FIELD_PREP(DMA_CHn_RX_CTRL_RBSZ, RX_FRAG_SIZE)); REG_WRITE(DMA_CHn_TXDESC_LIST_HADDR(0), TXDESC_PHYS_H(0)); REG_WRITE(DMA_CHn_TXDESC_LIST_ADDR(0), TXDESC_PHYS_L(0)); REG_WRITE(DMA_CHn_RXDESC_LIST_HADDR(0), RXDESC_PHYS_H(0)); REG_WRITE(DMA_CHn_RXDESC_LIST_ADDR(0), RXDESC_PHYS_L(0)); REG_WRITE(DMA_CHn_TXDESC_RING_LENGTH(0), NB_TX_DESCS - 1); REG_WRITE(DMA_CHn_RXDESC_RING_LENGTH(0), NB_RX_DESCS - 1); return 0; } const struct ethernet_api dwmac_api = { .iface_api.init = dwmac_iface_init, .get_capabilities = dwmac_caps, .set_config = dwmac_set_config, .send = dwmac_send, };