/* * Copyright (c) 2021, Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #ifdef PWM_PRESENT #include #endif #include #ifdef PPI_PRESENT #include #endif #include #include #include LOG_MODULE_REGISTER(nrf_led_matrix, CONFIG_DISPLAY_LOG_LEVEL); #define MATRIX_NODE DT_INST(0, nordic_nrf_led_matrix) #define TIMER_NODE DT_PHANDLE(MATRIX_NODE, timer) #define USE_PWM DT_NODE_HAS_PROP(MATRIX_NODE, pwm) #define PWM_NODE DT_PHANDLE(MATRIX_NODE, pwm) #define ROW_COUNT DT_PROP_LEN(MATRIX_NODE, row_gpios) #define COL_COUNT DT_PROP_LEN(MATRIX_NODE, col_gpios) #define GROUP_SIZE DT_PROP(MATRIX_NODE, pixel_group_size) #if (GROUP_SIZE > DT_PROP(TIMER_NODE, cc_num) - 1) || \ (USE_PWM && GROUP_SIZE > PWM0_CH_NUM) #error "Invalid pixel-group-size configured." #endif #define X_PIXELS DT_PROP(MATRIX_NODE, width) #define Y_PIXELS DT_PROP(MATRIX_NODE, height) #define PIXEL_COUNT DT_PROP_LEN(MATRIX_NODE, pixel_mapping) #if (PIXEL_COUNT != (X_PIXELS * Y_PIXELS)) #error "Invalid length of pixel-mapping." #endif #define PIXEL_MAPPING(idx) DT_PROP_BY_IDX(MATRIX_NODE, pixel_mapping, idx) #define GET_DT_ROW_IDX(pixel_idx) \ _GET_ROW_IDX(PIXEL_MAPPING(pixel_idx)) #define GET_ROW_IDX(dev_config, pixel_idx) \ _GET_ROW_IDX(dev_config->pixel_mapping[pixel_idx]) #define _GET_ROW_IDX(byte) (byte >> 4) #define GET_DT_COL_IDX(pixel_idx) \ _GET_COL_IDX(PIXEL_MAPPING(pixel_idx)) #define GET_COL_IDX(dev_config, pixel_idx) \ _GET_COL_IDX(dev_config->pixel_mapping[pixel_idx]) #define _GET_COL_IDX(byte) (byte & 0xF) #define CHECK_PIXEL(node_id, pha, idx) \ BUILD_ASSERT(GET_DT_ROW_IDX(idx) < ROW_COUNT, \ "Invalid row index in pixel-mapping["#idx"]."); \ BUILD_ASSERT(GET_DT_COL_IDX(idx) < COL_COUNT, \ "Invalid column index in pixel-mapping["#idx"]."); DT_FOREACH_PROP_ELEM(MATRIX_NODE, pixel_mapping, CHECK_PIXEL) #define REFRESH_FREQUENCY DT_PROP(MATRIX_NODE, refresh_frequency) #define BASE_FREQUENCY 8000000 #define TIMER_CLK_CONFIG NRF_TIMER_FREQ_8MHz #define PWM_CLK_CONFIG NRF_PWM_CLK_8MHz #define BRIGHTNESS_MAX 255 /* Always round up, as even a partially filled group uses the full time slot. */ #define PIXEL_SLOTS (ROW_COUNT * NRFX_CEIL_DIV(COL_COUNT, GROUP_SIZE)) #define QUANTUM (BASE_FREQUENCY \ / (REFRESH_FREQUENCY * PIXEL_SLOTS * BRIGHTNESS_MAX)) #define PIXEL_PERIOD (BRIGHTNESS_MAX * QUANTUM) #if (PIXEL_PERIOD > BIT_MASK(16)) || \ (USE_PWM && PIXEL_PERIOD > PWM_COUNTERTOP_COUNTERTOP_Msk) #error "Invalid pixel period. Change refresh-frequency or pixel-group-size." #endif #define ACTIVE_LOW_MASK 0x80 #define PSEL_MASK 0x7F #if (GROUP_SIZE > 1) #define ITERATION_COUNT ROW_COUNT * COL_COUNT #else #define ITERATION_COUNT PIXEL_COUNT #endif struct display_drv_config { NRF_TIMER_Type *timer; #if USE_PWM NRF_PWM_Type *pwm; #else nrfx_gpiote_t gpiote; #endif uint8_t rows[ROW_COUNT]; uint8_t cols[COL_COUNT]; uint8_t pixel_mapping[PIXEL_COUNT]; #if (GROUP_SIZE > 1) uint8_t refresh_order[ITERATION_COUNT]; #endif }; struct display_drv_data { #if USE_PWM uint16_t seq[PWM0_CH_NUM]; #else uint8_t gpiote_ch[GROUP_SIZE]; #endif uint8_t framebuf[PIXEL_COUNT]; uint8_t iteration; uint8_t prev_row_idx; uint8_t brightness; bool blanking; }; static void set_pin(uint8_t pin_info, bool active) { uint32_t value = active ? 1 : 0; if (pin_info & ACTIVE_LOW_MASK) { value = !value; } nrf_gpio_pin_write(pin_info & PSEL_MASK, value); } static int api_blanking_on(const struct device *dev) { struct display_drv_data *dev_data = dev->data; const struct display_drv_config *dev_config = dev->config; if (!dev_data->blanking) { nrf_timer_task_trigger(dev_config->timer, NRF_TIMER_TASK_STOP); for (uint8_t i = 0; i < ROW_COUNT; ++i) { set_pin(dev_config->rows[i], false); } for (uint8_t i = 0; i < COL_COUNT; ++i) { set_pin(dev_config->cols[i], false); } dev_data->blanking = true; } return 0; } static int api_blanking_off(const struct device *dev) { struct display_drv_data *dev_data = dev->data; const struct display_drv_config *dev_config = dev->config; if (dev_data->blanking) { dev_data->iteration = ITERATION_COUNT - 1; nrf_timer_task_trigger(dev_config->timer, NRF_TIMER_TASK_CLEAR); nrf_timer_task_trigger(dev_config->timer, NRF_TIMER_TASK_START); dev_data->blanking = false; } return 0; } static void *api_get_framebuffer(const struct device *dev) { struct display_drv_data *dev_data = dev->data; return dev_data->framebuf; } static int api_set_brightness(const struct device *dev, const uint8_t brightness) { struct display_drv_data *dev_data = dev->data; uint8_t new_brightness = CLAMP(brightness, 1, BRIGHTNESS_MAX); int16_t delta = (int16_t)new_brightness - dev_data->brightness; dev_data->brightness = new_brightness; for (uint8_t i = 0; i < PIXEL_COUNT; ++i) { uint8_t old_val = dev_data->framebuf[i]; if (old_val) { int16_t new_val = old_val + delta; dev_data->framebuf[i] = (uint8_t)CLAMP(new_val, 1, BRIGHTNESS_MAX); } } return 0; } static int api_set_pixel_format(const struct device *dev, const enum display_pixel_format format) { switch (format) { case PIXEL_FORMAT_MONO01: return 0; default: return -ENOTSUP; } } static int api_set_orientation(const struct device *dev, const enum display_orientation orientation) { switch (orientation) { case DISPLAY_ORIENTATION_NORMAL: return 0; default: return -ENOTSUP; } } static void api_get_capabilities(const struct device *dev, struct display_capabilities *caps) { caps->x_resolution = X_PIXELS; caps->y_resolution = Y_PIXELS; caps->supported_pixel_formats = PIXEL_FORMAT_MONO01; caps->screen_info = 0; caps->current_pixel_format = PIXEL_FORMAT_MONO01; caps->current_orientation = DISPLAY_ORIENTATION_NORMAL; } static inline void move_to_next_pixel(uint8_t *mask, uint8_t *data, const uint8_t **byte_buf) { *mask <<= 1; if (!*mask) { *mask = 0x01; *data = *(*byte_buf)++; } } static int api_write(const struct device *dev, const uint16_t x, const uint16_t y, const struct display_buffer_descriptor *desc, const void *buf) { struct display_drv_data *dev_data = dev->data; const uint8_t *byte_buf = buf; uint16_t end_x = x + desc->width; uint16_t end_y = y + desc->height; if (x >= X_PIXELS || end_x > X_PIXELS || y >= Y_PIXELS || end_y > Y_PIXELS) { return -EINVAL; } if (desc->pitch < desc->width) { return -EINVAL; } uint16_t to_skip = desc->pitch - desc->width; uint8_t mask = 0; uint8_t data = 0; for (uint16_t py = y; py < end_y; ++py) { for (uint16_t px = x; px < end_x; ++px) { move_to_next_pixel(&mask, &data, &byte_buf); dev_data->framebuf[px + (py * X_PIXELS)] = (data & mask) ? dev_data->brightness : 0; } if (to_skip) { uint16_t cnt = to_skip; do { move_to_next_pixel(&mask, &data, &byte_buf); } while (--cnt); } } return 0; } const struct display_driver_api driver_api = { .blanking_on = api_blanking_on, .blanking_off = api_blanking_off, .write = api_write, .get_framebuffer = api_get_framebuffer, .set_brightness = api_set_brightness, .get_capabilities = api_get_capabilities, .set_pixel_format = api_set_pixel_format, .set_orientation = api_set_orientation, }; static void prepare_pixel_pulse(const struct device *dev, uint8_t pixel_idx, uint8_t channel_idx) { struct display_drv_data *dev_data = dev->data; const struct display_drv_config *dev_config = dev->config; uint8_t col_idx = GET_COL_IDX(dev_config, pixel_idx); uint8_t col_pin_info = dev_config->cols[col_idx]; uint8_t col_psel = (col_pin_info & PSEL_MASK); bool col_active_low = (col_pin_info & ACTIVE_LOW_MASK); uint16_t pulse = dev_data->framebuf[pixel_idx] * QUANTUM; #if USE_PWM dev_config->pwm->PSEL.OUT[channel_idx] = col_psel; dev_data->seq[channel_idx] = pulse | (col_active_low ? 0 : BIT(15)); #else uint32_t gpiote_cfg = GPIOTE_CONFIG_MODE_Task | (col_psel << GPIOTE_CONFIG_PSEL_Pos); if (col_active_low) { gpiote_cfg |= (GPIOTE_CONFIG_POLARITY_LoToHi << GPIOTE_CONFIG_POLARITY_Pos) /* If there should be no pulse at all for * a given pixel, its column GPIO needs * to be configured as initially inactive. */ | ((pulse == 0 ? GPIOTE_CONFIG_OUTINIT_High : GPIOTE_CONFIG_OUTINIT_Low) << GPIOTE_CONFIG_OUTINIT_Pos); } else { gpiote_cfg |= (GPIOTE_CONFIG_POLARITY_HiToLo << GPIOTE_CONFIG_POLARITY_Pos) | ((pulse == 0 ? GPIOTE_CONFIG_OUTINIT_Low : GPIOTE_CONFIG_OUTINIT_High) << GPIOTE_CONFIG_OUTINIT_Pos); } /* First timer channel is used for timing the period of pulses. */ nrf_timer_cc_set(dev_config->timer, 1 + channel_idx, pulse); dev_config->gpiote.p_reg->CONFIG[dev_data->gpiote_ch[channel_idx]] = gpiote_cfg; #endif /* USE_PWM */ } static void timer_irq_handler(void *arg) { const struct device *dev = arg; struct display_drv_data *dev_data = dev->data; const struct display_drv_config *dev_config = dev->config; uint8_t iteration = dev_data->iteration; uint8_t pixel_idx; uint8_t row_idx; /* The timer is automagically stopped and cleared by shortcuts * on the same event (COMPARE0) that generates this interrupt. * But the event itself needs to be cleared here. */ nrf_timer_event_clear(dev_config->timer, NRF_TIMER_EVENT_COMPARE0); /* Disable the row that was enabled in the previous iteration. */ set_pin(dev_config->rows[dev_data->prev_row_idx], false); /* Disconnect used column pins from the peripheral that drove them. */ #if USE_PWM nrf_pwm_disable(dev_config->pwm); for (int i = 0; i < GROUP_SIZE; ++i) { dev_config->pwm->PSEL.OUT[i] = NRF_PWM_PIN_NOT_CONNECTED; } #else for (int i = 0; i < GROUP_SIZE; ++i) { dev_config->gpiote.p_reg->CONFIG[dev_data->gpiote_ch[i]] = 0; } #endif for (int i = 0; i < GROUP_SIZE; ++i) { #if (GROUP_SIZE > 1) do { ++iteration; if (iteration >= ITERATION_COUNT) { iteration = 0; } pixel_idx = dev_config->refresh_order[iteration]; } while (pixel_idx >= PIXEL_COUNT); #else ++iteration; if (iteration >= ITERATION_COUNT) { iteration = 0; } pixel_idx = iteration; #endif /* (GROUP_SIZE > 1) */ if (i == 0) { row_idx = GET_ROW_IDX(dev_config, pixel_idx); } else { /* If the next pixel is in a different row, it cannot * be lit within this group. */ if (row_idx != GET_ROW_IDX(dev_config, pixel_idx)) { break; } } dev_data->iteration = iteration; prepare_pixel_pulse(dev, pixel_idx, i); } /* Enable the row drive for the current pixel. */ set_pin(dev_config->rows[row_idx], true); dev_data->prev_row_idx = row_idx; #if USE_PWM /* Now that all the channels are configured, the PWM can be started. */ nrf_pwm_enable(dev_config->pwm); nrf_pwm_task_trigger(dev_config->pwm, NRF_PWM_TASK_SEQSTART0); #endif /* Restart the timer. */ nrf_timer_task_trigger(dev_config->timer, NRF_TIMER_TASK_START); } static int instance_init(const struct device *dev) { struct display_drv_data *dev_data = dev->data; const struct display_drv_config *dev_config = dev->config; #if USE_PWM uint32_t out_psels[NRF_PWM_CHANNEL_COUNT] = { NRF_PWM_PIN_NOT_CONNECTED, NRF_PWM_PIN_NOT_CONNECTED, NRF_PWM_PIN_NOT_CONNECTED, NRF_PWM_PIN_NOT_CONNECTED, }; nrf_pwm_sequence_t sequence = { .values.p_raw = dev_data->seq, .length = PWM0_CH_NUM, }; nrf_pwm_pins_set(dev_config->pwm, out_psels); nrf_pwm_configure(dev_config->pwm, PWM_CLK_CONFIG, NRF_PWM_MODE_UP, PIXEL_PERIOD); nrf_pwm_decoder_set(dev_config->pwm, NRF_PWM_LOAD_INDIVIDUAL, NRF_PWM_STEP_TRIGGERED); nrf_pwm_sequence_set(dev_config->pwm, 0, &sequence); nrf_pwm_loop_set(dev_config->pwm, 0); nrf_pwm_shorts_set(dev_config->pwm, NRF_PWM_SHORT_SEQEND0_STOP_MASK); #else nrfx_err_t err; nrf_ppi_channel_t ppi_ch; for (int i = 0; i < GROUP_SIZE; ++i) { uint8_t *gpiote_ch = &dev_data->gpiote_ch[i]; err = nrfx_ppi_channel_alloc(&ppi_ch); if (err != NRFX_SUCCESS) { LOG_ERR("Failed to allocate PPI channel."); /* Do not bother with freeing resources allocated * so far. The application needs to be reconfigured * anyway. */ return -ENOMEM; } err = nrfx_gpiote_channel_alloc(&dev_config->gpiote, gpiote_ch); if (err != NRFX_SUCCESS) { LOG_ERR("Failed to allocate GPIOTE channel."); /* Do not bother with freeing resources allocated * so far. The application needs to be reconfigured * anyway. */ return -ENOMEM; } nrf_ppi_channel_endpoint_setup(NRF_PPI, ppi_ch, nrf_timer_event_address_get(dev_config->timer, nrf_timer_compare_event_get(1 + i)), nrf_gpiote_event_address_get(dev_config->gpiote.p_reg, nrf_gpiote_out_task_get(*gpiote_ch))); nrf_ppi_channel_enable(NRF_PPI, ppi_ch); } #endif /* USE_PWM */ for (uint8_t i = 0; i < ROW_COUNT; ++i) { uint8_t row_pin_info = dev_config->rows[i]; set_pin(row_pin_info, false); nrf_gpio_cfg(row_pin_info & PSEL_MASK, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_DISCONNECT, NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_H0H1, NRF_GPIO_PIN_NOSENSE); } for (uint8_t i = 0; i < COL_COUNT; ++i) { uint8_t col_pin_info = dev_config->cols[i]; set_pin(col_pin_info, false); nrf_gpio_cfg(col_pin_info & PSEL_MASK, NRF_GPIO_PIN_DIR_OUTPUT, NRF_GPIO_PIN_INPUT_DISCONNECT, NRF_GPIO_PIN_NOPULL, NRF_GPIO_PIN_S0S1, NRF_GPIO_PIN_NOSENSE); } nrf_timer_bit_width_set(dev_config->timer, NRF_TIMER_BIT_WIDTH_16); nrf_timer_prescaler_set(dev_config->timer, TIMER_CLK_CONFIG); nrf_timer_cc_set(dev_config->timer, 0, PIXEL_PERIOD); nrf_timer_shorts_set(dev_config->timer, NRF_TIMER_SHORT_COMPARE0_STOP_MASK | NRF_TIMER_SHORT_COMPARE0_CLEAR_MASK); nrf_timer_event_clear(dev_config->timer, NRF_TIMER_EVENT_COMPARE0); nrf_timer_int_enable(dev_config->timer, NRF_TIMER_INT_COMPARE0_MASK); IRQ_CONNECT(DT_IRQN(TIMER_NODE), DT_IRQ(TIMER_NODE, priority), timer_irq_handler, DEVICE_DT_GET(MATRIX_NODE), 0); irq_enable(DT_IRQN(TIMER_NODE)); return 0; } static struct display_drv_data instance_data = { .brightness = 0xFF, .blanking = true, }; #if !USE_PWM #define CHECK_GPIOTE_INST(node_id, prop, idx) \ BUILD_ASSERT(NRF_DT_GPIOTE_INST_BY_IDX(node_id, prop, idx) == \ NRF_DT_GPIOTE_INST_BY_IDX(node_id, prop, 0), \ "All column GPIOs must use the same GPIOTE instance"); DT_FOREACH_PROP_ELEM(MATRIX_NODE, col_gpios, CHECK_GPIOTE_INST) #endif #define GET_PIN_INFO(node_id, pha, idx) \ (DT_GPIO_PIN_BY_IDX(node_id, pha, idx) | \ (DT_PROP_BY_PHANDLE_IDX(node_id, pha, idx, port) << 5) | \ ((DT_GPIO_FLAGS_BY_IDX(node_id, pha, idx) & GPIO_ACTIVE_LOW) ? \ ACTIVE_LOW_MASK : 0)), #define ADD_FF(i, _) 0xFF #define FILL_ROW_WITH_FF(node_id, pha, idx) LISTIFY(COL_COUNT, ADD_FF, (,)), #define GET_PIXEL_ORDINAL(node_id, pha, idx) \ [GET_DT_ROW_IDX(idx) * COL_COUNT + \ GET_DT_COL_IDX(idx)] = idx, static const struct display_drv_config instance_config = { .timer = (NRF_TIMER_Type *)DT_REG_ADDR(TIMER_NODE), #if USE_PWM .pwm = (NRF_PWM_Type *)DT_REG_ADDR(PWM_NODE), #else .gpiote = NRFX_GPIOTE_INSTANCE( NRF_DT_GPIOTE_INST_BY_IDX(MATRIX_NODE, col_gpios, 0)), #endif .rows = { DT_FOREACH_PROP_ELEM(MATRIX_NODE, row_gpios, GET_PIN_INFO) }, .cols = { DT_FOREACH_PROP_ELEM(MATRIX_NODE, col_gpios, GET_PIN_INFO) }, .pixel_mapping = DT_PROP(MATRIX_NODE, pixel_mapping), #if (GROUP_SIZE > 1) /* The whole array is by default filled with FFs, then the elements * for the actually used row/columns pairs are overwritten (using * designators) with the proper ordinal values for pixels. */ .refresh_order = { DT_FOREACH_PROP_ELEM(MATRIX_NODE, row_gpios, FILL_ROW_WITH_FF) DT_FOREACH_PROP_ELEM(MATRIX_NODE, pixel_mapping, GET_PIXEL_ORDINAL) }, #endif }; DEVICE_DT_DEFINE(MATRIX_NODE, instance_init, NULL, &instance_data, &instance_config, POST_KERNEL, CONFIG_DISPLAY_INIT_PRIORITY, &driver_api);