/* disc_access_sdhc.h - header SDHC*/ /* * Copyright (c) 2019 NXP * * SPDX-License-Identifier: Apache-2.0 */ #ifndef ZEPHYR_INCLUDE_DISK_DRIVER_SDMMC_H_ #define ZEPHYR_INCLUDE_DISK_DRIVER_SDMMC_H_ #include #define SDMMC_CLOCK_400KHZ (400000U) #define SD_CLOCK_25MHZ (25000000U) #define SD_CLOCK_50MHZ (50000000U) #define SD_CLOCK_100MHZ (100000000U) #define SD_CLOCK_208MHZ (208000000U) #define MMC_CLOCK_26MHZ (26000000U) #define MMC_CLOCK_52MHZ (52000000U) #define MMC_CLOCK_DDR52 (52000000U) #define MMC_CLOCK_HS200 (200000000U) #define MMC_CLOCK_HS400 (400000000U) /* Command IDs */ #define SDHC_GO_IDLE_STATE 0 #define SDHC_ALL_SEND_CID 2 #define SDHC_SEND_RELATIVE_ADDR 3 #define SDHC_SWITCH 6 #define SDHC_SELECT_CARD 7 #define SDHC_SEND_IF_COND 8 #define SDHC_SEND_CSD 9 #define SDHC_SEND_CID 10 #define SDHC_VOL_SWITCH 11 #define SDHC_STOP_TRANSMISSION 12 #define SDHC_SEND_STATUS 13 #define SDHC_GO_INACTIVE_STATE 15 #define SDHC_SET_BLOCK_SIZE 16 #define SDHC_READ_SINGLE_BLOCK 17 #define SDHC_READ_MULTIPLE_BLOCK 18 #define SDHC_SEND_TUNING_BLOCK 19 #define SDHC_SET_BLOCK_COUNT 23 #define SDHC_WRITE_BLOCK 24 #define SDHC_WRITE_MULTIPLE_BLOCK 25 #define SDHC_ERASE_BLOCK_START 32 #define SDHC_ERASE_BLOCK_END 33 #define SDHC_ERASE_BLOCK_OPERATION 38 #define SDHC_APP_CMD 55 #define SDHC_READ_OCR 58 #define SDHC_CRC_ON_OFF 59 enum sdhc_app_ext_cmd { SDHC_APP_SET_BUS_WIDTH = 6, SDHC_APP_SEND_STATUS = 13, SDHC_APP_SEND_NUM_WRITTEN_BLK = 22, SDHC_APP_SET_WRITE_BLK_ERASE_CNT = 23, SDHC_APP_SEND_OP_COND = 41, SDHC_APP_CLEAR_CARD_DETECT = 42, SDHC_APP_SEND_SCR = 51 }; #define SDHC_SEND_OP_COND SDHC_APP_SEND_OP_COND /* R1 response status */ #define SDHC_R1_IDLE 0x01 #define SDHC_R1_ERASE_RESET 0x02 #define SDHC_R1_ILLEGAL_COMMAND 0x04 #define SDHC_R1_COM_CRC 0x08 #define SDHC_R1_ERASE_SEQ 0x10 #define SDHC_R1_ADDRESS 0x20 #define SDHC_R1_PARAMETER 0x40 #define SDHC_CMD_SIZE 6 #define SDHC_CMD_BODY_SIZE (SDHC_CMD_SIZE - 1) #define SDHC_CRC16_SIZE 2 /* Command flags */ #define SDHC_START 0x80 #define SDHC_TX 0x40 /* Fields in various card registers */ #define SDHC_HCS (1 << 30) #define SDHC_CCS (1 << 30) #define SDHC_BUSY (1 << 31) #define SDHC_VHS_MASK (0x0F << 8) #define SDHC_VHS_3V3 (1 << 8) #define SDHC_CHECK 0xAA #define SDHC_CSD_SIZE 16 #define SDHC_CSD_V1 0 #define SDHC_CSD_V2 1 /* Data block tokens */ #define SDHC_TOKEN_SINGLE 0xFE #define SDHC_TOKEN_MULTI_WRITE 0xFC #define SDHC_TOKEN_STOP_TRAN 0xFD /* Data block responses */ #define SDHC_RESPONSE_ACCEPTED 0x05 #define SDHC_RESPONSE_CRC_ERR 0x0B #define SDHC_RESPONSE_WRITE_ERR 0x0E #define SDHC_MIN_TRIES 20 #define SDHC_RETRY_DELAY 20 /* Time to wait for the card to initialise */ #define SDHC_INIT_TIMEOUT 5000 /* Time to wait for the card to respond or come ready */ #define SDHC_READY_TIMEOUT 500 enum sdhc_rsp_type { SDHC_RSP_TYPE_NONE = 0U, SDHC_RSP_TYPE_R1 = 1U, SDHC_RSP_TYPE_R1b = 2U, SDHC_RSP_TYPE_R2 = 3U, SDHC_RSP_TYPE_R3 = 4U, SDHC_RSP_TYPE_R4 = 5U, SDHC_RSP_TYPE_R5 = 6U, SDHC_RSP_TYPE_R5b = 7U, SDHC_RSP_TYPE_R6 = 8U, SDHC_RSP_TYPE_R7 = 9U, }; enum sdhc_bus_width { SDHC_BUS_WIDTH1BIT = 0U, SDHC_BUS_WIDTH4BIT = 1U, }; enum sdhc_flag { SDHC_HIGH_CAPACITY_FLAG = (1U << 1U), SDHC_4BITS_WIDTH = (1U << 2U), SDHC_SDHC_FLAG = (1U << 3U), SDHC_SDXC_FLAG = (1U << 4U), SDHC_1800MV_FLAG = (1U << 5U), SDHC_CMD23_FLAG = (1U << 6U), SDHC_SPEED_CLASS_CONTROL_FLAG = (1U << 7U), }; enum sdhc_r1_error_flag { SDHC_R1OUTOF_RANGE_ERR = (1U << 31U), SDHC_R1ADDRESS_ERR = (1U << 30U), SDHC_R1BLK_LEN_ERR = (1U << 29U), SDHC_R1ERASE_SEQ_ERR = (1U << 28U), SDHC_R1ERASE_PARAMETER_ERR = (1U << 27U), SDHC_R1WRITE_PROTECTION_ERR = (1U << 26U), SDHC_R1CARD_LOCKED_ERR = (1U << 25U), SDHC_R1LOCK_UNLOCK_ERR = (1U << 24U), SDHC_R1CMD_CRC_ERR = (1U << 23U), SDHC_R1ILLEGAL_CMD_ERR = (1U << 22U), SDHC_R1ECC_ERR = (1U << 21U), SDHC_R1CARD_CONTROL_ERR = (1U << 20U), SDHC_R1ERR = (1U << 19U), SDHC_R1CID_CSD_OVERWRITE_ERR = (1U << 16U), SDHC_R1WRITE_PROTECTION_ERASE_SKIP = (1U << 15U), SDHC_R1CARD_ECC_DISABLED = (1U << 14U), SDHC_R1ERASE_RESET = (1U << 13U), SDHC_R1READY_FOR_DATA = (1U << 8U), SDHC_R1SWITCH_ERR = (1U << 7U), SDHC_R1APP_CMD = (1U << 5U), SDHC_R1AUTH_SEQ_ERR = (1U << 3U), SDHC_R1ERR_All_FLAG = (SDHC_R1OUTOF_RANGE_ERR | SDHC_R1ADDRESS_ERR | SDHC_R1BLK_LEN_ERR | SDHC_R1ERASE_SEQ_ERR | SDHC_R1ERASE_PARAMETER_ERR | SDHC_R1WRITE_PROTECTION_ERR | SDHC_R1CARD_LOCKED_ERR | SDHC_R1LOCK_UNLOCK_ERR | SDHC_R1CMD_CRC_ERR | SDHC_R1ILLEGAL_CMD_ERR | SDHC_R1ECC_ERR | SDHC_R1CARD_CONTROL_ERR | SDHC_R1ERR | SDHC_R1CID_CSD_OVERWRITE_ERR | SDHC_R1AUTH_SEQ_ERR), SDHC_R1ERR_NONE = 0, }; #define SD_R1_CURRENT_STATE(x) (((x)&0x00001E00U) >> 9U) enum sd_r1_current_state { SDMMC_R1_IDLE = 0U, SDMMC_R1_READY = 1U, SDMMC_R1_IDENTIFY = 2U, SDMMC_R1_STANDBY = 3U, SDMMC_R1_TRANSFER = 4U, SDMMC_R1_SEND_DATA = 5U, SDMMC_R1_RECIVE_DATA = 6U, SDMMC_R1_PROGRAM = 7U, SDMMC_R1_DISCONNECT = 8U, }; enum sd_ocr_flag { SD_OCR_PWR_BUSY_FLAG = (1U << 31U), /*!< Power up busy status */ SD_OCR_HOST_CAP_FLAG = (1U << 30U), /*!< Card capacity status */ SD_OCR_CARD_CAP_FLAG = SD_OCR_HOST_CAP_FLAG, /*!< Card capacity status */ SD_OCR_SWITCH_18_REQ_FLAG = (1U << 24U), /*!< Switch to 1.8V request */ SD_OCR_SWITCH_18_ACCEPT_FLAG = SD_OCR_SWITCH_18_REQ_FLAG, /*!< Switch to 1.8V accepted */ SD_OCR_VDD27_28FLAG = (1U << 15U), /*!< VDD 2.7-2.8 */ SD_OCR_VDD28_29FLAG = (1U << 16U), /*!< VDD 2.8-2.9 */ SD_OCR_VDD29_30FLAG = (1U << 17U), /*!< VDD 2.9-3.0 */ SD_OCR_VDD30_31FLAG = (1U << 18U), /*!< VDD 2.9-3.0 */ SD_OCR_VDD31_32FLAG = (1U << 19U), /*!< VDD 3.0-3.1 */ SD_OCR_VDD32_33FLAG = (1U << 20U), /*!< VDD 3.1-3.2 */ SD_OCR_VDD33_34FLAG = (1U << 21U), /*!< VDD 3.2-3.3 */ SD_OCR_VDD34_35FLAG = (1U << 22U), /*!< VDD 3.3-3.4 */ SD_OCR_VDD35_36FLAG = (1U << 23U), /*!< VDD 3.4-3.5 */ }; #define SD_PRODUCT_NAME_BYTES (5U) struct sd_cid { uint8_t manufacturer; /*!< Manufacturer ID [127:120] */ uint16_t application; /*!< OEM/Application ID [119:104] */ uint8_t name[SD_PRODUCT_NAME_BYTES]; /*!< Product name [103:64] */ uint8_t version; /*!< Product revision [63:56] */ uint32_t ser_num; /*!< Product serial number [55:24] */ uint16_t date; /*!< Manufacturing date [19:8] */ }; struct sd_csd { uint8_t csd_structure; /*!< CSD structure [127:126] */ uint8_t read_time1; /*!< Data read access-time-1 [119:112] */ uint8_t read_time2; /*!< Data read access-time-2 in clock cycles (NSAC*100) [111:104] */ uint8_t xfer_rate; /*!< Maximum data transfer rate [103:96] */ uint16_t cmd_class; /*!< Card command classes [95:84] */ uint8_t read_blk_len; /*!< Maximum read data block length [83:80] */ uint16_t flags; /*!< Flags in _sd_csd_flag */ uint32_t device_size; /*!< Device size [73:62] */ uint8_t read_current_min; /*!< Maximum read current at VDD min [61:59] */ uint8_t read_current_max; /*!< Maximum read current at VDD max [58:56] */ uint8_t write_current_min; /*!< Maximum write current at VDD min [55:53] */ uint8_t write_current_max; /*!< Maximum write current at VDD max [52:50] */ uint8_t dev_size_mul; /*!< Device size multiplier [49:47] */ uint8_t erase_size; /*!< Erase sector size [45:39] */ uint8_t write_prtect_size; /*!< Write protect group size [38:32] */ uint8_t write_speed_factor; /*!< Write speed factor [28:26] */ uint8_t write_blk_len; /*!< Maximum write data block length [25:22] */ uint8_t file_fmt; /*!< File format [11:10] */ }; struct sd_scr { uint8_t scr_structure; /*!< SCR Structure [63:60] */ uint8_t sd_spec; /*!< SD memory card specification version [59:56] */ uint16_t flags; /*!< SCR flags in _sd_scr_flag */ uint8_t sd_sec; /*!< Security specification supported [54:52] */ uint8_t sd_width; /*!< Data bus widths supported [51:48] */ uint8_t sd_ext_sec; /*!< Extended security support [46:43] */ uint8_t cmd_support; /*!< Command support bits [33:32] 33-support CMD23, 32-support cmd20*/ uint32_t rsvd; /*!< reserved for manufacturer usage [31:0] */ }; enum sd_timing_mode { SD_TIMING_SDR12_DFT_MODE = 0U, /*!< Identification mode & SDR12 */ SD_TIMING_SDR25_HIGH_SPEED_MODE = 1U, /*!< High speed mode & SDR25 */ SD_TIMING_SDR50_MODE = 2U, /*!< SDR50 mode*/ SD_TIMING_SDR104_MODE = 3U, /*!< SDR104 mode */ SD_TIMING_DDR50_MODE = 4U, /*!< DDR50 mode */ }; /*! @brief SD card current limit */ enum sd_max_current { SD_MAX_CURRENT_200MA = 0U, /*!< default current limit */ SD_MAX_CURRENT_400MA = 1U, /*!< current limit to 400MA */ SD_MAX_CURRENT_600MA = 2U, /*!< current limit to 600MA */ SD_MAX_CURRENT_800MA = 3U, /*!< current limit to 800MA */ }; enum sd_voltage { SD_VOL_NONE = 0U, /*!< indicate current voltage setting is not set by user*/ SD_VOL_3_3_V = 1U, /*!< card operation voltage around 3.3v */ SD_VOL_3_0_V = 2U, /*!< card operation voltage around 3.0v */ SD_VOL_1_8_V = 3U, /*!< card operation voltage around 1.8v */ }; #define SDMMC_DEFAULT_BLOCK_SIZE (512U) struct sd_data_op { uint32_t start_block; uint32_t block_size; uint32_t block_count; uint32_t *buf; }; enum sd_switch_arg { SD_SWITCH_CHECK = 0U, /*!< SD switch mode 0: check function */ SD_SWITCH_SET = 1U, /*!< SD switch mode 1: set function */ }; enum sd_group_num { SD_GRP_TIMING_MODE = 0U, /*!< access mode group*/ SD_GRP_CMD_SYS_MODE = 1U, /*!< command system group*/ SD_GRP_DRIVER_STRENGTH_MODE = 2U, /*!< driver strength group*/ SD_GRP_CURRENT_LIMIT_MODE = 3U, /*!< current limit group*/ }; enum sd_driver_strength { SD_DRV_STRENGTH_TYPEB = 0U, /*!< default driver strength*/ SD_DRV_STRENGTH_TYPEA = 1U, /*!< driver strength TYPE A */ SD_DRV_STRENGTH_TYPEC = 2U, /*!< driver strength TYPE C */ SD_DRV_STRENGTH_TYPED = 3U, /*!< driver strength TYPE D */ }; enum sd_csd_flag { SD_CSD_READ_BLK_PARTIAL_FLAG = (1U << 0U), /*!< Partial blocks for read allowed [79:79] */ SD_CSD_WRITE_BLK_MISALIGN_FLAG = (1U << 1U), /*!< Write block misalignment [78:78] */ SD_CSD_READ_BLK_MISALIGN_FLAG = (1U << 2U), /*!< Read block misalignment [77:77] */ SD_CSD_DSR_IMPLEMENTED_FLAG = (1U << 3U), /*!< DSR implemented [76:76] */ SD_CSD_ERASE_BLK_EN_FLAG = (1U << 4U), /*!< Erase single block enabled [46:46] */ SD_CSD_WRITE_PROTECT_GRP_EN_FLAG = (1U << 5U), /*!< Write protect group enabled [31:31] */ SD_CSD_WRITE_BLK_PARTIAL_FLAG = (1U << 6U), /*!< Partial blocks for write allowed [21:21] */ SD_CSD_FILE_FMT_GRP_FLAG = (1U << 7U), /*!< File format group [15:15] */ SD_CSD_COPY_FLAG = (1U << 8U), /*!< Copy flag [14:14] */ SD_CSD_PERMANENT_WRITE_PROTECT_FLAG = (1U << 9U), /*!< Permanent write protection [13:13] */ SD_CSD_TMP_WRITE_PROTECT_FLAG = (1U << 10U), /*!< Temporary write protection [12:12] */ }; enum sd_scr_flag { SD_SCR_DATA_STATUS_AFTER_ERASE = (1U << 0U), /*!< Data status after erases [55:55] */ SD_SCR_SPEC3 = (1U << 1U), /*!< Specification version 3.00 or higher [47:47]*/ }; enum sd_spec_version { SD_SPEC_VER1_0 = (1U << 0U), /*!< SD card version 1.0-1.01 */ SD_SPEC_VER1_1 = (1U << 1U), /*!< SD card version 1.10 */ SD_SPEC_VER2_0 = (1U << 2U), /*!< SD card version 2.00 */ SD_SPEC_VER3_0 = (1U << 3U), /*!< SD card version 3.0 */ }; enum sd_command_class { SD_CMD_CLASS_BASIC = (1U << 0U), /*!< Card command class 0 */ SD_CMD_CLASS_BLOCK_READ = (1U << 2U), /*!< Card command class 2 */ SD_CMD_CLASS_BLOCK_WRITE = (1U << 4U), /*!< Card command class 4 */ SD_CMD_CLASS_ERASE = (1U << 5U), /*!< Card command class 5 */ SD_CMD_CLASS_WRITE_PROTECT = (1U << 6U), /*!< Card command class 6 */ SD_CMD_CLASS_LOCKCARD = (1U << 7U), /*!< Card command class 7 */ SD_CMD_CLASS_APP_SPECIFIC = (1U << 8U), /*!< Card command class 8 */ SD_CMD_CLASS_IO_MODE = (1U << 9U), /*!< Card command class 9 */ SD_CMD_CLASS_SWITCH = (1U << 10U), /*!< Card command class 10 */ }; struct sdhc_retry { uint32_t end; int16_t tries; uint16_t sleep; }; struct sdhc_flag_map { uint8_t mask; uint8_t err; }; /* The SD protocol requires sending ones while reading but Zephyr * defaults to writing zeros. */ static const uint8_t sdhc_ones[] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, }; BUILD_ASSERT(sizeof(sdhc_ones) % SDHC_CSD_SIZE == 0); BUILD_ASSERT(SDMMC_DEFAULT_BLOCK_SIZE % sizeof(sdhc_ones) == 0); /* Maps R1 response flags to error codes */ static const struct sdhc_flag_map sdhc_r1_flags[] = { {SDHC_R1_PARAMETER, EFAULT}, {SDHC_R1_ADDRESS, EFAULT}, {SDHC_R1_ILLEGAL_COMMAND, EINVAL}, {SDHC_R1_COM_CRC, EILSEQ}, {SDHC_R1_ERASE_SEQ, EIO}, {SDHC_R1_ERASE_RESET, EIO}, {SDHC_R1_IDLE, ECONNRESET}, {0, 0}, }; /* Maps disk status flags to error codes */ static const struct sdhc_flag_map sdhc_disk_status_flags[] = { {DISK_STATUS_UNINIT, ENODEV}, {DISK_STATUS_NOMEDIA, ENOENT}, {DISK_STATUS_WR_PROTECT, EROFS}, {0, 0}, }; /* Maps data block flags to error codes */ static const struct sdhc_flag_map sdhc_data_response_flags[] = { {SDHC_RESPONSE_WRITE_ERR, EIO}, {SDHC_RESPONSE_CRC_ERR, EILSEQ}, {SDHC_RESPONSE_ACCEPTED, 0}, /* Unrecognised value */ {0, EPROTO}, }; /* Returns true if an error code is retryable at the disk layer */ static inline bool sdhc_is_retryable(int err) { switch (err) { case 0: return false; case -EILSEQ: case -EIO: case -ETIMEDOUT: return true; default: return false; } } /* Maps a flag based error code into a Zephyr errno */ static inline int sdhc_map_flags(const struct sdhc_flag_map *map, int flags) { if (flags < 0) { return flags; } for (; map->mask != 0U; map++) { if ((flags & map->mask) == map->mask) { return -map->err; } } return -map->err; } /* Converts disk status into an error code */ static inline int sdhc_map_disk_status(int status) { return sdhc_map_flags(sdhc_disk_status_flags, status); } /* Converts the R1 response flags into an error code */ static inline int sdhc_map_r1_status(int status) { return sdhc_map_flags(sdhc_r1_flags, status); } /* Converts an early stage idle mode R1 code into an error code */ static inline int sdhc_map_r1_idle_status(int status) { if (status < 0) { return status; } if (status == SDHC_R1_IDLE) { return 0; } return sdhc_map_r1_status(status); } /* Converts the data block response flags into an error code */ static inline int sdhc_map_data_status(int status) { return sdhc_map_flags(sdhc_data_response_flags, status); } /* Initialises a retry helper */ static inline void sdhc_retry_init(struct sdhc_retry *retry, uint32_t timeout, uint16_t sleep) { retry->end = k_uptime_get_32() + timeout; retry->tries = 0; retry->sleep = sleep; } /* Called at the end of a retry loop. Returns if the minimum try * count and timeout has passed. Delays/yields on retry. */ static inline bool sdhc_retry_ok(struct sdhc_retry *retry) { int32_t remain = retry->end - k_uptime_get_32(); if (retry->tries < SDHC_MIN_TRIES) { retry->tries++; if (retry->sleep != 0U) { k_msleep(retry->sleep); } return true; } if (remain >= 0) { if (retry->sleep > 0) { k_msleep(retry->sleep); } else { k_yield(); } return true; } return false; } static inline void sdhc_decode_csd(struct sd_csd *csd, uint32_t *raw_csd, uint32_t *blk_cout, uint32_t *blk_size) { uint32_t tmp_blk_cout, tmp_blk_size; csd->csd_structure = (uint8_t)((raw_csd[3U] & 0xC0000000U) >> 30U); csd->read_time1 = (uint8_t)((raw_csd[3U] & 0xFF0000U) >> 16U); csd->read_time2 = (uint8_t)((raw_csd[3U] & 0xFF00U) >> 8U); csd->xfer_rate = (uint8_t)(raw_csd[3U] & 0xFFU); csd->cmd_class = (uint16_t)((raw_csd[2U] & 0xFFF00000U) >> 20U); csd->read_blk_len = (uint8_t)((raw_csd[2U] & 0xF0000U) >> 16U); if (raw_csd[2U] & 0x8000U) csd->flags |= SD_CSD_READ_BLK_PARTIAL_FLAG; if (raw_csd[2U] & 0x4000U) csd->flags |= SD_CSD_READ_BLK_PARTIAL_FLAG; if (raw_csd[2U] & 0x2000U) csd->flags |= SD_CSD_READ_BLK_MISALIGN_FLAG; if (raw_csd[2U] & 0x1000U) csd->flags |= SD_CSD_DSR_IMPLEMENTED_FLAG; switch (csd->csd_structure) { case 0: csd->device_size = (uint32_t)((raw_csd[2U] & 0x3FFU) << 2U); csd->device_size |= (uint32_t)((raw_csd[1U] & 0xC0000000U) >> 30U); csd->read_current_min = (uint8_t)((raw_csd[1U] & 0x38000000U) >> 27U); csd->read_current_max = (uint8_t)((raw_csd[1U] & 0x7000000U) >> 24U); csd->write_current_min = (uint8_t)((raw_csd[1U] & 0xE00000U) >> 20U); csd->write_current_max = (uint8_t)((raw_csd[1U] & 0x1C0000U) >> 18U); csd->dev_size_mul = (uint8_t)((raw_csd[1U] & 0x38000U) >> 15U); /* Get card total block count and block size. */ tmp_blk_cout = ((csd->device_size + 1U) << (csd->dev_size_mul + 2U)); tmp_blk_size = (1U << (csd->read_blk_len)); if (tmp_blk_size != SDMMC_DEFAULT_BLOCK_SIZE) { tmp_blk_cout = (tmp_blk_cout * tmp_blk_size); tmp_blk_size = SDMMC_DEFAULT_BLOCK_SIZE; tmp_blk_cout = (tmp_blk_cout / tmp_blk_size); } if (blk_cout) *blk_cout = tmp_blk_cout; if (blk_size) *blk_size = tmp_blk_size; break; case 1: tmp_blk_size = SDMMC_DEFAULT_BLOCK_SIZE; csd->device_size = (uint32_t)((raw_csd[2U] & 0x3FU) << 16U); csd->device_size |= (uint32_t)((raw_csd[1U] & 0xFFFF0000U) >> 16U); tmp_blk_cout = ((csd->device_size + 1U) * 1024U); if (blk_cout) *blk_cout = tmp_blk_cout; if (blk_size) *blk_size = tmp_blk_size; break; default: break; } if ((uint8_t)((raw_csd[1U] & 0x4000U) >> 14U)) csd->flags |= SD_CSD_ERASE_BLK_EN_FLAG; csd->erase_size = (uint8_t)((raw_csd[1U] & 0x3F80U) >> 7U); csd->write_prtect_size = (uint8_t)(raw_csd[1U] & 0x7FU); csd->write_speed_factor = (uint8_t)((raw_csd[0U] & 0x1C000000U) >> 26U); csd->write_blk_len = (uint8_t)((raw_csd[0U] & 0x3C00000U) >> 22U); if ((uint8_t)((raw_csd[0U] & 0x200000U) >> 21U)) csd->flags |= SD_CSD_WRITE_BLK_PARTIAL_FLAG; if ((uint8_t)((raw_csd[0U] & 0x8000U) >> 15U)) csd->flags |= SD_CSD_FILE_FMT_GRP_FLAG; if ((uint8_t)((raw_csd[0U] & 0x4000U) >> 14U)) csd->flags |= SD_CSD_COPY_FLAG; if ((uint8_t)((raw_csd[0U] & 0x2000U) >> 13U)) csd->flags |= SD_CSD_PERMANENT_WRITE_PROTECT_FLAG; if ((uint8_t)((raw_csd[0U] & 0x1000U) >> 12U)) csd->flags |= SD_CSD_TMP_WRITE_PROTECT_FLAG; csd->file_fmt = (uint8_t)((raw_csd[0U] & 0xC00U) >> 10U); } static inline void sdhc_decode_scr(struct sd_scr *scr, uint32_t *raw_scr, uint32_t *version) { uint32_t tmp_version = 0; scr->scr_structure = (uint8_t)((raw_scr[0U] & 0xF0000000U) >> 28U); scr->sd_spec = (uint8_t)((raw_scr[0U] & 0xF000000U) >> 24U); if ((uint8_t)((raw_scr[0U] & 0x800000U) >> 23U)) scr->flags |= SD_SCR_DATA_STATUS_AFTER_ERASE; scr->sd_sec = (uint8_t)((raw_scr[0U] & 0x700000U) >> 20U); scr->sd_width = (uint8_t)((raw_scr[0U] & 0xF0000U) >> 16U); if ((uint8_t)((raw_scr[0U] & 0x8000U) >> 15U)) scr->flags |= SD_SCR_SPEC3; scr->sd_ext_sec = (uint8_t)((raw_scr[0U] & 0x7800U) >> 10U); scr->cmd_support = (uint8_t)(raw_scr[0U] & 0x3U); scr->rsvd = raw_scr[1U]; /* Get specification version. */ switch (scr->sd_spec) { case 0U: tmp_version = SD_SPEC_VER1_0; break; case 1U: tmp_version = SD_SPEC_VER1_1; break; case 2U: tmp_version = SD_SPEC_VER2_0; if (scr->flags & SD_SCR_SPEC3) { tmp_version = SD_SPEC_VER3_0; } break; default: break; } if (version && tmp_version) *version = tmp_version; } static inline void sdhc_decode_cid(struct sd_cid *cid, uint32_t *raw_cid) { cid->manufacturer = (uint8_t)((raw_cid[3U] & 0xFF000000U) >> 24U); cid->application = (uint16_t)((raw_cid[3U] & 0xFFFF00U) >> 8U); cid->name[0U] = (uint8_t)((raw_cid[3U] & 0xFFU)); cid->name[1U] = (uint8_t)((raw_cid[2U] & 0xFF000000U) >> 24U); cid->name[2U] = (uint8_t)((raw_cid[2U] & 0xFF0000U) >> 16U); cid->name[3U] = (uint8_t)((raw_cid[2U] & 0xFF00U) >> 8U); cid->name[4U] = (uint8_t)((raw_cid[2U] & 0xFFU)); cid->version = (uint8_t)((raw_cid[1U] & 0xFF000000U) >> 24U); cid->ser_num = (uint32_t)((raw_cid[1U] & 0xFFFFFFU) << 8U); cid->ser_num |= (uint32_t)((raw_cid[0U] & 0xFF000000U) >> 24U); cid->date = (uint16_t)((raw_cid[0U] & 0xFFF00U) >> 8U); } #endif /*ZEPHYR_INCLUDE_DISK_DRIVER_SDMMC_H_*/