/* h4.c - H:4 UART based Bluetooth driver */ /* * Copyright (c) 2015-2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL #include LOG_MODULE_REGISTER(bt_driver); #include "common/bt_str.h" #include "../util.h" static K_KERNEL_STACK_DEFINE(rx_thread_stack, CONFIG_BT_DRV_RX_STACK_SIZE); static struct k_thread rx_thread_data; static struct { struct net_buf *buf; struct k_fifo fifo; uint16_t remaining; uint16_t discard; bool have_hdr; bool discardable; uint8_t hdr_len; uint8_t type; union { struct bt_hci_evt_hdr evt; struct bt_hci_acl_hdr acl; struct bt_hci_iso_hdr iso; uint8_t hdr[4]; }; } rx = { .fifo = Z_FIFO_INITIALIZER(rx.fifo), }; static struct { uint8_t type; struct net_buf *buf; struct k_fifo fifo; } tx = { .fifo = Z_FIFO_INITIALIZER(tx.fifo), }; static const struct device *const h4_dev = DEVICE_DT_GET(DT_CHOSEN(zephyr_bt_uart)); static inline void h4_get_type(void) { /* Get packet type */ if (uart_fifo_read(h4_dev, &rx.type, 1) != 1) { LOG_WRN("Unable to read H:4 packet type"); rx.type = BT_HCI_H4_NONE; return; } switch (rx.type) { case BT_HCI_H4_EVT: rx.remaining = sizeof(rx.evt); rx.hdr_len = rx.remaining; break; case BT_HCI_H4_ACL: rx.remaining = sizeof(rx.acl); rx.hdr_len = rx.remaining; break; case BT_HCI_H4_ISO: if (IS_ENABLED(CONFIG_BT_ISO)) { rx.remaining = sizeof(rx.iso); rx.hdr_len = rx.remaining; break; } __fallthrough; default: LOG_ERR("Unknown H:4 type 0x%02x", rx.type); rx.type = BT_HCI_H4_NONE; } } static void h4_read_hdr(void) { int bytes_read = rx.hdr_len - rx.remaining; int ret; ret = uart_fifo_read(h4_dev, rx.hdr + bytes_read, rx.remaining); if (unlikely(ret < 0)) { LOG_ERR("Unable to read from UART (ret %d)", ret); } else { rx.remaining -= ret; } } static inline void get_acl_hdr(void) { h4_read_hdr(); if (!rx.remaining) { struct bt_hci_acl_hdr *hdr = &rx.acl; rx.remaining = sys_le16_to_cpu(hdr->len); LOG_DBG("Got ACL header. Payload %u bytes", rx.remaining); rx.have_hdr = true; } } static inline void get_iso_hdr(void) { h4_read_hdr(); if (!rx.remaining) { struct bt_hci_iso_hdr *hdr = &rx.iso; rx.remaining = bt_iso_hdr_len(sys_le16_to_cpu(hdr->len)); LOG_DBG("Got ISO header. Payload %u bytes", rx.remaining); rx.have_hdr = true; } } static inline void get_evt_hdr(void) { struct bt_hci_evt_hdr *hdr = &rx.evt; h4_read_hdr(); if (rx.hdr_len == sizeof(*hdr) && rx.remaining < sizeof(*hdr)) { switch (rx.evt.evt) { case BT_HCI_EVT_LE_META_EVENT: rx.remaining++; rx.hdr_len++; break; #if defined(CONFIG_BT_CLASSIC) case BT_HCI_EVT_INQUIRY_RESULT_WITH_RSSI: case BT_HCI_EVT_EXTENDED_INQUIRY_RESULT: rx.discardable = true; break; #endif } } if (!rx.remaining) { if (rx.evt.evt == BT_HCI_EVT_LE_META_EVENT && (rx.hdr[sizeof(*hdr)] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) { LOG_DBG("Marking adv report as discardable"); rx.discardable = true; } rx.remaining = hdr->len - (rx.hdr_len - sizeof(*hdr)); LOG_DBG("Got event header. Payload %u bytes", hdr->len); rx.have_hdr = true; } } static inline void copy_hdr(struct net_buf *buf) { net_buf_add_mem(buf, rx.hdr, rx.hdr_len); } static void reset_rx(void) { rx.type = BT_HCI_H4_NONE; rx.remaining = 0U; rx.have_hdr = false; rx.hdr_len = 0U; rx.discardable = false; } static struct net_buf *get_rx(k_timeout_t timeout) { LOG_DBG("type 0x%02x, evt 0x%02x", rx.type, rx.evt.evt); switch (rx.type) { case BT_HCI_H4_EVT: return bt_buf_get_evt(rx.evt.evt, rx.discardable, timeout); case BT_HCI_H4_ACL: return bt_buf_get_rx(BT_BUF_ACL_IN, timeout); case BT_HCI_H4_ISO: if (IS_ENABLED(CONFIG_BT_ISO)) { return bt_buf_get_rx(BT_BUF_ISO_IN, timeout); } } return NULL; } static void rx_thread(void *p1, void *p2, void *p3) { struct net_buf *buf; ARG_UNUSED(p1); ARG_UNUSED(p2); ARG_UNUSED(p3); LOG_DBG("started"); while (1) { LOG_DBG("rx.buf %p", rx.buf); /* We can only do the allocation if we know the initial * header, since Command Complete/Status events must use the * original command buffer (if available). */ if (rx.have_hdr && !rx.buf) { rx.buf = get_rx(K_FOREVER); LOG_DBG("Got rx.buf %p", rx.buf); if (rx.remaining > net_buf_tailroom(rx.buf)) { LOG_ERR("Not enough space in buffer"); rx.discard = rx.remaining; reset_rx(); } else { copy_hdr(rx.buf); } } /* Let the ISR continue receiving new packets */ uart_irq_rx_enable(h4_dev); buf = net_buf_get(&rx.fifo, K_FOREVER); do { uart_irq_rx_enable(h4_dev); LOG_DBG("Calling bt_recv(%p)", buf); bt_recv(buf); /* Give other threads a chance to run if the ISR * is receiving data so fast that rx.fifo never * or very rarely goes empty. */ k_yield(); uart_irq_rx_disable(h4_dev); buf = net_buf_get(&rx.fifo, K_NO_WAIT); } while (buf); } } static size_t h4_discard(const struct device *uart, size_t len) { uint8_t buf[33]; int err; err = uart_fifo_read(uart, buf, MIN(len, sizeof(buf))); if (unlikely(err < 0)) { LOG_ERR("Unable to read from UART (err %d)", err); return 0; } return err; } static inline void read_payload(void) { struct net_buf *buf; int read; if (!rx.buf) { size_t buf_tailroom; rx.buf = get_rx(K_NO_WAIT); if (!rx.buf) { if (rx.discardable) { LOG_WRN("Discarding event 0x%02x", rx.evt.evt); rx.discard = rx.remaining; reset_rx(); return; } LOG_WRN("Failed to allocate, deferring to rx_thread"); uart_irq_rx_disable(h4_dev); return; } LOG_DBG("Allocated rx.buf %p", rx.buf); buf_tailroom = net_buf_tailroom(rx.buf); if (buf_tailroom < rx.remaining) { LOG_ERR("Not enough space in buffer %u/%zu", rx.remaining, buf_tailroom); rx.discard = rx.remaining; reset_rx(); return; } copy_hdr(rx.buf); } read = uart_fifo_read(h4_dev, net_buf_tail(rx.buf), rx.remaining); if (unlikely(read < 0)) { LOG_ERR("Failed to read UART (err %d)", read); return; } net_buf_add(rx.buf, read); rx.remaining -= read; LOG_DBG("got %d bytes, remaining %u", read, rx.remaining); LOG_DBG("Payload (len %u): %s", rx.buf->len, bt_hex(rx.buf->data, rx.buf->len)); if (rx.remaining) { return; } buf = rx.buf; rx.buf = NULL; if (rx.type == BT_HCI_H4_EVT) { bt_buf_set_type(buf, BT_BUF_EVT); } else { bt_buf_set_type(buf, BT_BUF_ACL_IN); } reset_rx(); LOG_DBG("Putting buf %p to rx fifo", buf); net_buf_put(&rx.fifo, buf); } static inline void read_header(void) { switch (rx.type) { case BT_HCI_H4_NONE: h4_get_type(); return; case BT_HCI_H4_EVT: get_evt_hdr(); break; case BT_HCI_H4_ACL: get_acl_hdr(); break; case BT_HCI_H4_ISO: if (IS_ENABLED(CONFIG_BT_ISO)) { get_iso_hdr(); break; } __fallthrough; default: CODE_UNREACHABLE; return; } if (rx.have_hdr && rx.buf) { if (rx.remaining > net_buf_tailroom(rx.buf)) { LOG_ERR("Not enough space in buffer"); rx.discard = rx.remaining; reset_rx(); } else { copy_hdr(rx.buf); } } } static inline void process_tx(void) { int bytes; if (!tx.buf) { tx.buf = net_buf_get(&tx.fifo, K_NO_WAIT); if (!tx.buf) { LOG_ERR("TX interrupt but no pending buffer!"); uart_irq_tx_disable(h4_dev); return; } } if (!tx.type) { switch (bt_buf_get_type(tx.buf)) { case BT_BUF_ACL_OUT: tx.type = BT_HCI_H4_ACL; break; case BT_BUF_CMD: tx.type = BT_HCI_H4_CMD; break; case BT_BUF_ISO_OUT: if (IS_ENABLED(CONFIG_BT_ISO)) { tx.type = BT_HCI_H4_ISO; break; } __fallthrough; default: LOG_ERR("Unknown buffer type"); goto done; } bytes = uart_fifo_fill(h4_dev, &tx.type, 1); if (bytes != 1) { LOG_WRN("Unable to send H:4 type"); tx.type = BT_HCI_H4_NONE; return; } } bytes = uart_fifo_fill(h4_dev, tx.buf->data, tx.buf->len); if (unlikely(bytes < 0)) { LOG_ERR("Unable to write to UART (err %d)", bytes); } else { net_buf_pull(tx.buf, bytes); } if (tx.buf->len) { return; } done: tx.type = BT_HCI_H4_NONE; net_buf_unref(tx.buf); tx.buf = net_buf_get(&tx.fifo, K_NO_WAIT); if (!tx.buf) { uart_irq_tx_disable(h4_dev); } } static inline void process_rx(void) { LOG_DBG("remaining %u discard %u have_hdr %u rx.buf %p len %u", rx.remaining, rx.discard, rx.have_hdr, rx.buf, rx.buf ? rx.buf->len : 0); if (rx.discard) { rx.discard -= h4_discard(h4_dev, rx.discard); return; } if (rx.have_hdr) { read_payload(); } else { read_header(); } } static void bt_uart_isr(const struct device *unused, void *user_data) { ARG_UNUSED(unused); ARG_UNUSED(user_data); while (uart_irq_update(h4_dev) && uart_irq_is_pending(h4_dev)) { if (uart_irq_tx_ready(h4_dev)) { process_tx(); } if (uart_irq_rx_ready(h4_dev)) { process_rx(); } } } static int h4_send(struct net_buf *buf) { LOG_DBG("buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len); net_buf_put(&tx.fifo, buf); uart_irq_tx_enable(h4_dev); return 0; } /** Setup the HCI transport, which usually means to reset the Bluetooth IC * * @param dev The device structure for the bus connecting to the IC * * @return 0 on success, negative error value on failure */ int __weak bt_hci_transport_setup(const struct device *dev) { h4_discard(h4_dev, 32); return 0; } static int h4_open(void) { int ret; k_tid_t tid; LOG_DBG(""); uart_irq_rx_disable(h4_dev); uart_irq_tx_disable(h4_dev); ret = bt_hci_transport_setup(h4_dev); if (ret < 0) { return -EIO; } uart_irq_callback_set(h4_dev, bt_uart_isr); tid = k_thread_create(&rx_thread_data, rx_thread_stack, K_KERNEL_STACK_SIZEOF(rx_thread_stack), rx_thread, NULL, NULL, NULL, K_PRIO_COOP(CONFIG_BT_RX_PRIO), 0, K_NO_WAIT); k_thread_name_set(tid, "bt_rx_thread"); return 0; } #if defined(CONFIG_BT_HCI_SETUP) static int h4_setup(const struct bt_hci_setup_params *params) { ARG_UNUSED(params); /* Extern bt_h4_vnd_setup function. * This function executes vendor-specific commands sequence to * initialize BT Controller before BT Host executes Reset sequence. * bt_h4_vnd_setup function must be implemented in vendor-specific HCI * extansion module if CONFIG_BT_HCI_SETUP is enabled. */ extern int bt_h4_vnd_setup(const struct device *dev); return bt_h4_vnd_setup(h4_dev); } #endif static const struct bt_hci_driver drv = { .name = "H:4", .bus = BT_HCI_DRIVER_BUS_UART, .open = h4_open, .send = h4_send, #if defined(CONFIG_BT_HCI_SETUP) .setup = h4_setup #endif }; static int bt_uart_init(void) { if (!device_is_ready(h4_dev)) { return -ENODEV; } bt_hci_driver_register(&drv); return 0; } SYS_INIT(bt_uart_init, POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE);