/* * Copyright (c) 2016-2019 Nordic Semiconductor ASA * Copyright (c) 2016 Vinayak Kariappa Chettimada * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include "nrf_clock_calibration.h" #include #include #include LOG_MODULE_REGISTER(clock_control, CONFIG_CLOCK_CONTROL_LOG_LEVEL); #define DT_DRV_COMPAT nordic_nrf_clock #define CTX_ONOFF BIT(6) #define CTX_API BIT(7) #define CTX_MASK (CTX_ONOFF | CTX_API) #define STATUS_MASK 0x7 #define GET_STATUS(flags) (flags & STATUS_MASK) #define GET_CTX(flags) (flags & CTX_MASK) /* Used only by HF clock */ #define HF_USER_BT BIT(0) #define HF_USER_GENERIC BIT(1) /* Helper logging macros which prepends subsys name to the log. */ #ifdef CONFIG_LOG #define CLOCK_LOG(lvl, dev, subsys, ...) \ LOG_##lvl("%s: " GET_ARG_N(1, __VA_ARGS__), \ get_sub_config(dev, (enum clock_control_nrf_type)subsys)->name \ COND_CODE_0(NUM_VA_ARGS_LESS_1(__VA_ARGS__),\ (), (, GET_ARGS_LESS_N(1, __VA_ARGS__)))) #else #define CLOCK_LOG(...) #endif #define ERR(dev, subsys, ...) CLOCK_LOG(ERR, dev, subsys, __VA_ARGS__) #define WRN(dev, subsys, ...) CLOCK_LOG(WRN, dev, subsys, __VA_ARGS__) #define INF(dev, subsys, ...) CLOCK_LOG(INF, dev, subsys, __VA_ARGS__) #define DBG(dev, subsys, ...) CLOCK_LOG(DBG, dev, subsys, __VA_ARGS__) /* Clock subsys structure */ struct nrf_clock_control_sub_data { clock_control_cb_t cb; void *user_data; uint32_t flags; }; typedef void (*clk_ctrl_func_t)(void); /* Clock subsys static configuration */ struct nrf_clock_control_sub_config { clk_ctrl_func_t start; /* Clock start function */ clk_ctrl_func_t stop; /* Clock stop function */ #ifdef CONFIG_LOG const char *name; #endif }; struct nrf_clock_control_data { struct onoff_manager mgr[CLOCK_CONTROL_NRF_TYPE_COUNT]; struct nrf_clock_control_sub_data subsys[CLOCK_CONTROL_NRF_TYPE_COUNT]; }; struct nrf_clock_control_config { struct nrf_clock_control_sub_config subsys[CLOCK_CONTROL_NRF_TYPE_COUNT]; }; static atomic_t hfclk_users; static uint64_t hf_start_tstamp; static uint64_t hf_stop_tstamp; /* Return true if given event has enabled interrupt and is triggered. Event * is cleared. */ static bool clock_event_check_and_clean(nrf_clock_event_t evt, uint32_t intmask) { bool ret = nrf_clock_event_check(NRF_CLOCK, evt) && nrf_clock_int_enable_check(NRF_CLOCK, intmask); if (ret) { nrf_clock_event_clear(NRF_CLOCK, evt); } return ret; } static void clock_irqs_enable(void) { nrf_clock_int_enable(NRF_CLOCK, (NRF_CLOCK_INT_HF_STARTED_MASK | NRF_CLOCK_INT_LF_STARTED_MASK | COND_CODE_1(CONFIG_USB_NRFX, (NRF_POWER_INT_USBDETECTED_MASK | NRF_POWER_INT_USBREMOVED_MASK | NRF_POWER_INT_USBPWRRDY_MASK), (0)))); } static struct nrf_clock_control_sub_data *get_sub_data(struct device *dev, enum clock_control_nrf_type type) { struct nrf_clock_control_data *data = dev->driver_data; return &data->subsys[type]; } static const struct nrf_clock_control_sub_config *get_sub_config( struct device *dev, enum clock_control_nrf_type type) { const struct nrf_clock_control_config *config = dev->config_info; return &config->subsys[type]; } static struct onoff_manager *get_onoff_manager(struct device *dev, enum clock_control_nrf_type type) { struct nrf_clock_control_data *data = dev->driver_data; return &data->mgr[type]; } DEVICE_DECLARE(clock_nrf); struct onoff_manager *z_nrf_clock_control_get_onoff(clock_control_subsys_t sys) { return get_onoff_manager(DEVICE_GET(clock_nrf), (enum clock_control_nrf_type)sys); } static enum clock_control_status get_status(struct device *dev, clock_control_subsys_t subsys) { enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys; __ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT); return GET_STATUS(get_sub_data(dev, type)->flags); } static int set_off_state(uint32_t *flags, uint32_t ctx) { int err = 0; int key = irq_lock(); uint32_t current_ctx = GET_CTX(*flags); if ((current_ctx != 0) && (current_ctx != ctx)) { err = -EPERM; } else { *flags = CLOCK_CONTROL_STATUS_OFF; } irq_unlock(key); return err; } static int set_starting_state(uint32_t *flags, uint32_t ctx) { int err = 0; int key = irq_lock(); uint32_t current_ctx = GET_CTX(*flags); if ((*flags & (STATUS_MASK)) == CLOCK_CONTROL_STATUS_OFF) { *flags = CLOCK_CONTROL_STATUS_STARTING | ctx; } else if (current_ctx != ctx) { err = -EPERM; } else { err = -EBUSY; } irq_unlock(key); return err; } static void set_on_state(uint32_t *flags) { int key = irq_lock(); *flags = CLOCK_CONTROL_STATUS_ON | GET_CTX(*flags); irq_unlock(key); } static void clkstarted_handle(struct device *dev, enum clock_control_nrf_type type) { struct nrf_clock_control_sub_data *sub_data = get_sub_data(dev, type); clock_control_cb_t callback = sub_data->cb; void *user_data = sub_data->user_data; sub_data->cb = NULL; set_on_state(&sub_data->flags); DBG(dev, type, "Clock started"); if (callback) { callback(dev, (clock_control_subsys_t)type, user_data); } } static inline void anomaly_132_workaround(void) { #if (CONFIG_NRF52_ANOMALY_132_DELAY_US - 0) static bool once; if (!once) { k_busy_wait(CONFIG_NRF52_ANOMALY_132_DELAY_US); once = true; } #endif } static void lfclk_start(void) { if (IS_ENABLED(CONFIG_NRF52_ANOMALY_132_WORKAROUND)) { anomaly_132_workaround(); } nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_LFCLKSTART); } static void lfclk_stop(void) { if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) { z_nrf_clock_calibration_lfclk_stopped(); } nrf_clock_event_clear(NRF_CLOCK, NRF_CLOCK_EVENT_LFCLKSTARTED); nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_LFCLKSTOP); } static void hfclk_start(void) { if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_SHELL)) { hf_start_tstamp = k_uptime_get(); } nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTART); } static void hfclk_stop(void) { if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_SHELL)) { hf_stop_tstamp = k_uptime_get(); } nrf_clock_event_clear(NRF_CLOCK, NRF_CLOCK_EVENT_HFCLKSTARTED); nrf_clock_task_trigger(NRF_CLOCK, NRF_CLOCK_TASK_HFCLKSTOP); } static uint32_t *get_hf_flags(void) { struct nrf_clock_control_data *data = DEVICE_GET(clock_nrf)->driver_data; return &data->subsys[CLOCK_CONTROL_NRF_TYPE_HFCLK].flags; } static void generic_hfclk_start(void) { nrf_clock_hfclk_t type; bool already_started = false; int key = irq_lock(); hfclk_users |= HF_USER_GENERIC; if (hfclk_users & HF_USER_BT) { (void)nrf_clock_is_running(NRF_CLOCK, NRF_CLOCK_DOMAIN_HFCLK, &type); if (type == NRF_CLOCK_HFCLK_HIGH_ACCURACY) { already_started = true; /* Set on state in case clock interrupt comes and we * want to avoid handling that. */ set_on_state(get_hf_flags()); } } irq_unlock(key); if (already_started) { /* Clock already started by z_nrf_clock_bt_ctlr_hf_request */ clkstarted_handle(DEVICE_GET(clock_nrf), CLOCK_CONTROL_NRF_TYPE_HFCLK); return; } hfclk_start(); } static void generic_hfclk_stop(void) { if (atomic_and(&hfclk_users, ~HF_USER_GENERIC) & HF_USER_BT) { /* bt still requesting the clock. */ return; } hfclk_stop(); } void z_nrf_clock_bt_ctlr_hf_request(void) { if (atomic_or(&hfclk_users, HF_USER_BT) & HF_USER_GENERIC) { /* generic request already activated clock. */ return; } hfclk_start(); } void z_nrf_clock_bt_ctlr_hf_release(void) { if (atomic_and(&hfclk_users, ~HF_USER_BT) & HF_USER_GENERIC) { /* generic still requesting the clock. */ return; } hfclk_stop(); } static int stop(struct device *dev, clock_control_subsys_t subsys, uint32_t ctx) { enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys; struct nrf_clock_control_sub_data *subdata = get_sub_data(dev, type); int err; __ASSERT_NO_MSG(type < CLOCK_CONTROL_NRF_TYPE_COUNT); err = set_off_state(&subdata->flags, ctx); if (err < 0) { return err; } get_sub_config(dev, type)->stop(); return 0; } static int api_stop(struct device *dev, clock_control_subsys_t subsys) { return stop(dev, subsys, CTX_API); } static int async_start(struct device *dev, clock_control_subsys_t subsys, struct clock_control_async_data *data, uint32_t ctx) { enum clock_control_nrf_type type = (enum clock_control_nrf_type)subsys; struct nrf_clock_control_sub_data *subdata = get_sub_data(dev, type); int err; err = set_starting_state(&subdata->flags, ctx); if (err < 0) { return err; } subdata->cb = data->cb; subdata->user_data = data->user_data; get_sub_config(dev, type)->start(); return 0; } static int api_start(struct device *dev, clock_control_subsys_t subsys, struct clock_control_async_data *data) { return async_start(dev, subsys, data, CTX_API); } static void blocking_start_callback(struct device *dev, clock_control_subsys_t subsys, void *user_data) { struct k_sem *sem = user_data; k_sem_give(sem); } static int api_blocking_start(struct device *dev, clock_control_subsys_t subsys) { struct k_sem sem = Z_SEM_INITIALIZER(sem, 0, 1); struct clock_control_async_data data = { .cb = blocking_start_callback, .user_data = &sem }; int err; if (!IS_ENABLED(CONFIG_MULTITHREADING)) { return -ENOTSUP; } err = api_start(dev, subsys, &data); if (err < 0) { return err; } return k_sem_take(&sem, K_MSEC(500)); } static clock_control_subsys_t get_subsys(struct onoff_manager *mgr) { struct nrf_clock_control_data *data = DEVICE_GET(clock_nrf)->driver_data; size_t offset = (size_t)(mgr - data->mgr); return (clock_control_subsys_t)offset; } static void onoff_stop(struct onoff_manager *mgr, onoff_notify_fn notify) { int res; res = stop(DEVICE_GET(clock_nrf), get_subsys(mgr), CTX_ONOFF); notify(mgr, res); } static void onoff_started_callback(struct device *dev, clock_control_subsys_t sys, void *user_data) { enum clock_control_nrf_type type = (enum clock_control_nrf_type)sys; struct onoff_manager *mgr = get_onoff_manager(dev, type); onoff_notify_fn notify = user_data; notify(mgr, 0); } static void onoff_start(struct onoff_manager *mgr, onoff_notify_fn notify) { struct clock_control_async_data data = { .cb = onoff_started_callback, .user_data = notify }; int err; err = async_start(DEVICE_GET(clock_nrf), get_subsys(mgr), &data, CTX_ONOFF); if (err < 0) { notify(mgr, err); } } static void lfclk_spinwait(nrf_clock_lfclk_t t) { nrf_clock_domain_t d = NRF_CLOCK_DOMAIN_LFCLK; nrf_clock_lfclk_t type; while (!(nrf_clock_is_running(NRF_CLOCK, d, (void *)&type) && (type == t))) { /* empty */ } } void z_nrf_clock_control_lf_on(enum nrf_lfclk_start_mode start_mode) { static atomic_t on; static struct onoff_client cli; if (atomic_set(&on, 1) == 0) { int err; struct onoff_manager *mgr = get_onoff_manager(DEVICE_GET(clock_nrf), CLOCK_CONTROL_NRF_TYPE_LFCLK); sys_notify_init_spinwait(&cli.notify); err = onoff_request(mgr, &cli); __ASSERT_NO_MSG(err >= 0); } switch (start_mode) { case NRF_LFCLK_START_MODE_SPINWAIT_STABLE: lfclk_spinwait(CLOCK_CONTROL_NRF_K32SRC); break; case NRF_LFCLK_START_MODE_SPINWAIT_RUNNING: lfclk_spinwait(NRF_CLOCK_LFCLK_RC); break; case NRF_LFCLK_START_MODE_NOWAIT: break; default: __ASSERT_NO_MSG(false); } } /* Note: this function has public linkage, and MUST have this * particular name. The platform architecture itself doesn't care, * but there is a test (tests/kernel/arm_irq_vector_table) that needs * to find it to it can set it in a custom vector table. Should * probably better abstract that at some point (e.g. query and reset * it by pointer at runtime, maybe?) so we don't have this leaky * symbol. */ void nrf_power_clock_isr(void *arg); static int clk_init(struct device *dev) { int err; static const struct onoff_transitions transitions = { .start = onoff_start, .stop = onoff_stop }; IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), nrf_power_clock_isr, 0, 0); irq_enable(DT_INST_IRQN(0)); nrf_clock_lf_src_set(NRF_CLOCK, CLOCK_CONTROL_NRF_K32SRC); if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) { struct nrf_clock_control_data *data = dev->driver_data; z_nrf_clock_calibration_init(data->mgr); } clock_irqs_enable(); for (enum clock_control_nrf_type i = 0; i < CLOCK_CONTROL_NRF_TYPE_COUNT; i++) { struct nrf_clock_control_sub_data *subdata = get_sub_data(dev, i); err = onoff_manager_init(get_onoff_manager(dev, i), &transitions); if (err < 0) { return err; } subdata->flags = CLOCK_CONTROL_STATUS_OFF; } return 0; } static const struct clock_control_driver_api clock_control_api = { .on = api_blocking_start, .off = api_stop, .async_on = api_start, .get_status = get_status, }; static struct nrf_clock_control_data data; static const struct nrf_clock_control_config config = { .subsys = { [CLOCK_CONTROL_NRF_TYPE_HFCLK] = { .start = generic_hfclk_start, .stop = generic_hfclk_stop, IF_ENABLED(CONFIG_LOG, (.name = "hfclk",)) }, [CLOCK_CONTROL_NRF_TYPE_LFCLK] = { .start = lfclk_start, .stop = lfclk_stop, IF_ENABLED(CONFIG_LOG, (.name = "lfclk",)) } } }; DEVICE_AND_API_INIT(clock_nrf, DT_INST_LABEL(0), clk_init, &data, &config, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &clock_control_api); #if defined(CONFIG_USB_NRFX) static bool power_event_check_and_clean(nrf_power_event_t evt, uint32_t intmask) { bool ret = nrf_power_event_check(NRF_POWER, evt) && nrf_power_int_enable_check(NRF_POWER, intmask); if (ret) { nrf_power_event_clear(NRF_POWER, evt); } return ret; } #endif static void usb_power_isr(void) { #if defined(CONFIG_USB_NRFX) extern void usb_dc_nrfx_power_event_callback(nrf_power_event_t event); if (power_event_check_and_clean(NRF_POWER_EVENT_USBDETECTED, NRF_POWER_INT_USBDETECTED_MASK)) { usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBDETECTED); } if (power_event_check_and_clean(NRF_POWER_EVENT_USBPWRRDY, NRF_POWER_INT_USBPWRRDY_MASK)) { usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBPWRRDY); } if (power_event_check_and_clean(NRF_POWER_EVENT_USBREMOVED, NRF_POWER_INT_USBREMOVED_MASK)) { usb_dc_nrfx_power_event_callback(NRF_POWER_EVENT_USBREMOVED); } #endif } void nrf_power_clock_isr(void *arg) { ARG_UNUSED(arg); struct device *dev = DEVICE_GET(clock_nrf); if (clock_event_check_and_clean(NRF_CLOCK_EVENT_HFCLKSTARTED, NRF_CLOCK_INT_HF_STARTED_MASK)) { struct nrf_clock_control_sub_data *data = get_sub_data(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK); /* Check needed due to anomaly 201: * HFCLKSTARTED may be generated twice. * * Also software should be notified about clock being on only * if generic request occured. */ if ((GET_STATUS(data->flags) == CLOCK_CONTROL_STATUS_STARTING) && (hfclk_users & HF_USER_GENERIC)) { clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_HFCLK); } } if (clock_event_check_and_clean(NRF_CLOCK_EVENT_LFCLKSTARTED, NRF_CLOCK_INT_LF_STARTED_MASK)) { if (IS_ENABLED( CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) { z_nrf_clock_calibration_lfclk_started(); } clkstarted_handle(dev, CLOCK_CONTROL_NRF_TYPE_LFCLK); } usb_power_isr(); if (IS_ENABLED(CONFIG_CLOCK_CONTROL_NRF_K32SRC_RC_CALIBRATION)) { z_nrf_clock_calibration_isr(); } } #ifdef CONFIG_USB_NRFX void nrf5_power_usb_power_int_enable(bool enable) { uint32_t mask; mask = NRF_POWER_INT_USBDETECTED_MASK | NRF_POWER_INT_USBREMOVED_MASK | NRF_POWER_INT_USBPWRRDY_MASK; if (enable) { nrf_power_int_enable(NRF_POWER, mask); irq_enable(DT_INST_IRQN(0)); } else { nrf_power_int_disable(NRF_POWER, mask); } } #endif static int cmd_status(const struct shell *shell, size_t argc, char **argv) { nrf_clock_hfclk_t hfclk_src; bool hf_status; bool lf_status = nrf_clock_is_running(NRF_CLOCK, NRF_CLOCK_DOMAIN_LFCLK, NULL); struct onoff_manager *hf_mgr = get_onoff_manager(DEVICE_GET(clock_nrf), CLOCK_CONTROL_NRF_TYPE_HFCLK); struct onoff_manager *lf_mgr = get_onoff_manager(DEVICE_GET(clock_nrf), CLOCK_CONTROL_NRF_TYPE_LFCLK); uint32_t abs_start, abs_stop; int key = irq_lock(); uint64_t now = k_uptime_get(); (void)nrf_clock_is_running(NRF_CLOCK, NRF_CLOCK_DOMAIN_HFCLK, (void *)&hfclk_src); hf_status = (hfclk_src == NRF_CLOCK_HFCLK_HIGH_ACCURACY); abs_start = hf_start_tstamp; abs_stop = hf_stop_tstamp; irq_unlock(key); shell_print(shell, "HF clock:"); shell_print(shell, "\t- %srunning (users: %u)", hf_status ? "" : "not ", hf_mgr->refs); shell_print(shell, "\t- last start: %u ms (%u ms ago)", (uint32_t)abs_start, (uint32_t)(now - abs_start)); shell_print(shell, "\t- last stop: %u ms (%u ms ago)", (uint32_t)abs_stop, (uint32_t)(now - abs_stop)); shell_print(shell, "LF clock:"); shell_print(shell, "\t- %srunning (users: %u)", lf_status ? "" : "not ", lf_mgr->refs); return 0; } SHELL_STATIC_SUBCMD_SET_CREATE(subcmds, SHELL_CMD_ARG(status, NULL, "Status", cmd_status, 1, 0), SHELL_SUBCMD_SET_END ); SHELL_COND_CMD_REGISTER(CONFIG_CLOCK_CONTROL_NRF_SHELL, nrf_clock_control, &subcmds, "Clock control commmands", cmd_status);