/* * Copyright (c) 2016, Freescale Semiconductor, Inc. * Copyright (c) 2017,2019, NXP * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nxp_lpc_spi #include #include #include #include LOG_MODULE_REGISTER(spi_mcux_flexcomm, CONFIG_SPI_LOG_LEVEL); #include "spi_context.h" #define SPI_CHIP_SELECT_COUNT 4 #define SPI_MAX_DATA_WIDTH 16 struct spi_mcux_config { SPI_Type *base; void (*irq_config_func)(struct device *dev); }; struct spi_mcux_data { spi_master_handle_t handle; struct spi_context ctx; size_t transfer_len; }; static void spi_mcux_transfer_next_packet(struct device *dev) { const struct spi_mcux_config *config = dev->config_info; struct spi_mcux_data *data = dev->driver_data; SPI_Type *base = config->base; struct spi_context *ctx = &data->ctx; spi_transfer_t transfer; status_t status; if ((ctx->tx_len == 0) && (ctx->rx_len == 0)) { /* nothing left to rx or tx, we're done! */ spi_context_cs_control(&data->ctx, false); spi_context_complete(&data->ctx, 0); return; } if (ctx->tx_len == 0) { /* rx only, nothing to tx */ transfer.txData = NULL; transfer.rxData = ctx->rx_buf; transfer.dataSize = ctx->rx_len; transfer.configFlags = kSPI_FrameAssert; } else if (ctx->rx_len == 0) { /* tx only, nothing to rx */ transfer.txData = (uint8_t *) ctx->tx_buf; transfer.rxData = NULL; transfer.dataSize = ctx->tx_len; transfer.configFlags = kSPI_FrameAssert; } else if (ctx->tx_len == ctx->rx_len) { /* rx and tx are the same length */ transfer.txData = (uint8_t *) ctx->tx_buf; transfer.rxData = ctx->rx_buf; transfer.dataSize = ctx->tx_len; transfer.configFlags = kSPI_FrameAssert; } else if (ctx->tx_len > ctx->rx_len) { /* Break up the tx into multiple transfers so we don't have to * rx into a longer intermediate buffer. Leave chip select * active between transfers. */ transfer.txData = (uint8_t *) ctx->tx_buf; transfer.rxData = ctx->rx_buf; transfer.dataSize = ctx->rx_len; transfer.configFlags = 0; } else { /* Break up the rx into multiple transfers so we don't have to * tx from a longer intermediate buffer. Leave chip select * active between transfers. */ transfer.txData = (uint8_t *) ctx->tx_buf; transfer.rxData = ctx->rx_buf; transfer.dataSize = ctx->tx_len; transfer.configFlags = 0; } if (ctx->tx_count <= 1 && ctx->rx_count <= 1) { transfer.configFlags = kSPI_FrameAssert; } data->transfer_len = transfer.dataSize; status = SPI_MasterTransferNonBlocking(base, &data->handle, &transfer); if (status != kStatus_Success) { LOG_ERR("Transfer could not start"); } } static void spi_mcux_isr(void *arg) { struct device *dev = (struct device *)arg; const struct spi_mcux_config *config = dev->config_info; struct spi_mcux_data *data = dev->driver_data; SPI_Type *base = config->base; SPI_MasterTransferHandleIRQ(base, &data->handle); } static void spi_mcux_master_transfer_callback(SPI_Type *base, spi_master_handle_t *handle, status_t status, void *userData) { struct device *dev = userData; struct spi_mcux_data *data = dev->driver_data; spi_context_update_tx(&data->ctx, 1, data->transfer_len); spi_context_update_rx(&data->ctx, 1, data->transfer_len); spi_mcux_transfer_next_packet(dev); } static int spi_mcux_configure(struct device *dev, const struct spi_config *spi_cfg) { const struct spi_mcux_config *config = dev->config_info; struct spi_mcux_data *data = dev->driver_data; SPI_Type *base = config->base; spi_master_config_t master_config; uint32_t clock_freq; uint32_t word_size; if (spi_context_configured(&data->ctx, spi_cfg)) { /* This configuration is already in use */ return 0; } SPI_MasterGetDefaultConfig(&master_config); if (spi_cfg->slave > SPI_CHIP_SELECT_COUNT) { LOG_ERR("Slave %d is greater than %d", spi_cfg->slave, SPI_CHIP_SELECT_COUNT); return -EINVAL; } word_size = SPI_WORD_SIZE_GET(spi_cfg->operation); if (word_size > SPI_MAX_DATA_WIDTH) { LOG_ERR("Word size %d is greater than %d", word_size, SPI_MAX_DATA_WIDTH); return -EINVAL; } master_config.sselNum = spi_cfg->slave; master_config.sselPol = kSPI_SpolActiveAllLow; master_config.dataWidth = word_size - 1; master_config.polarity = (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPOL) ? kSPI_ClockPolarityActiveLow : kSPI_ClockPolarityActiveHigh; master_config.phase = (SPI_MODE_GET(spi_cfg->operation) & SPI_MODE_CPHA) ? kSPI_ClockPhaseSecondEdge : kSPI_ClockPhaseFirstEdge; master_config.direction = (spi_cfg->operation & SPI_TRANSFER_LSB) ? kSPI_LsbFirst : kSPI_MsbFirst; master_config.baudRate_Bps = spi_cfg->frequency; /* The clock frequency is hardcoded CPU's speed to allow SPI to * function at high speeds. The core clock and flexcomm should * use the same clock source. */ clock_freq = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; SPI_MasterInit(base, &master_config, clock_freq); SPI_MasterTransferCreateHandle(base, &data->handle, spi_mcux_master_transfer_callback, dev); SPI_SetDummyData(base, 0); data->ctx.config = spi_cfg; spi_context_cs_configure(&data->ctx); return 0; } static int transceive(struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, struct k_poll_signal *signal) { struct spi_mcux_data *data = dev->driver_data; int ret; spi_context_lock(&data->ctx, asynchronous, signal); ret = spi_mcux_configure(dev, spi_cfg); if (ret) { goto out; } spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(&data->ctx, true); spi_mcux_transfer_next_packet(dev); ret = spi_context_wait_for_completion(&data->ctx); out: spi_context_release(&data->ctx, ret); return ret; } static int spi_mcux_transceive(struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL); } #ifdef CONFIG_SPI_ASYNC static int spi_mcux_transceive_async(struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, struct k_poll_signal *async) { return transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, async); } #endif /* CONFIG_SPI_ASYNC */ static int spi_mcux_release(struct device *dev, const struct spi_config *spi_cfg) { struct spi_mcux_data *data = dev->driver_data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static int spi_mcux_init(struct device *dev) { const struct spi_mcux_config *config = dev->config_info; struct spi_mcux_data *data = dev->driver_data; config->irq_config_func(dev); spi_context_unlock_unconditionally(&data->ctx); return 0; } static const struct spi_driver_api spi_mcux_driver_api = { .transceive = spi_mcux_transceive, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_mcux_transceive_async, #endif .release = spi_mcux_release, }; #define SPI_MCUX_FLEXCOMM_DEVICE(id) \ static void spi_mcux_config_func_##id(struct device *dev); \ static const struct spi_mcux_config spi_mcux_config_##id = { \ .base = \ (SPI_Type *)DT_INST_REG_ADDR(id), \ .irq_config_func = spi_mcux_config_func_##id, \ }; \ static struct spi_mcux_data spi_mcux_data_##id = { \ SPI_CONTEXT_INIT_LOCK(spi_mcux_data_##id, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_mcux_data_##id, ctx), \ }; \ DEVICE_AND_API_INIT(spi_mcux_##id, \ DT_INST_LABEL(id), \ &spi_mcux_init, \ &spi_mcux_data_##id, \ &spi_mcux_config_##id, \ POST_KERNEL, \ CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \ &spi_mcux_driver_api); \ static void spi_mcux_config_func_##id(struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(id), \ DT_INST_IRQ(id, priority), \ spi_mcux_isr, DEVICE_GET(spi_mcux_##id), \ 0); \ irq_enable(DT_INST_IRQN(id)); \ } DT_INST_FOREACH_STATUS_OKAY(SPI_MCUX_FLEXCOMM_DEVICE)