/* * Copyright (c) 2016 Freescale Semiconductor, Inc. * Copyright (c) 2018 Phytec Messtechnik GmbH * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nxp_fxos8700 #include "fxos8700.h" #include #include #include #include LOG_MODULE_REGISTER(FXOS8700, CONFIG_SENSOR_LOG_LEVEL); int fxos8700_set_odr(struct device *dev, const struct sensor_value *val) { const struct fxos8700_config *config = dev->config_info; struct fxos8700_data *data = dev->driver_data; s32_t dr = val->val1; #ifdef CONFIG_FXOS8700_MODE_HYBRID /* ODR is halved in hybrid mode */ if (val->val1 == 400 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_800; } else if (val->val1 == 200 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_400; } else if (val->val1 == 100 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_200; } else if (val->val1 == 50 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_100; } else if (val->val1 == 25 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_50; } else if (val->val1 == 6 && val->val2 == 250000) { dr = FXOS8700_CTRLREG1_DR_RATE_12_5; } else if (val->val1 == 3 && val->val2 == 125000) { dr = FXOS8700_CTRLREG1_DR_RATE_6_25; } else if (val->val1 == 0 && val->val2 == 781300) { dr = FXOS8700_CTRLREG1_DR_RATE_1_56; } else { return -EINVAL; } #else if (val->val1 == 800 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_800; } else if (val->val1 == 400 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_400; } else if (val->val1 == 200 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_200; } else if (val->val1 == 100 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_100; } else if (val->val1 == 50 && val->val2 == 0) { dr = FXOS8700_CTRLREG1_DR_RATE_50; } else if (val->val1 == 12 && val->val2 == 500000) { dr = FXOS8700_CTRLREG1_DR_RATE_12_5; } else if (val->val1 == 6 && val->val2 == 250000) { dr = FXOS8700_CTRLREG1_DR_RATE_6_25; } else if (val->val1 == 1 && val->val2 == 562500) { dr = FXOS8700_CTRLREG1_DR_RATE_1_56; } else { return -EINVAL; } #endif LOG_DBG("Set ODR to 0x%x", (u8_t)dr); return i2c_reg_update_byte(data->i2c, config->i2c_address, FXOS8700_REG_CTRLREG1, FXOS8700_CTRLREG1_DR_MASK, (u8_t)dr); } static int fxos8700_set_mt_ths(struct device *dev, const struct sensor_value *val) { #ifdef CONFIG_FXOS8700_MOTION const struct fxos8700_config *config = dev->config_info; struct fxos8700_data *data = dev->driver_data; u64_t micro_ms2 = abs(val->val1 * 1000000LL + val->val2); u64_t ths = micro_ms2 / FXOS8700_FF_MT_THS_SCALE; if (ths > FXOS8700_FF_MT_THS_MASK) { LOG_ERR("Threshold value is out of range"); return -EINVAL; } LOG_DBG("Set FF_MT_THS to %d", (u8_t)ths); return i2c_reg_update_byte(data->i2c, config->i2c_address, FXOS8700_REG_FF_MT_THS, FXOS8700_FF_MT_THS_MASK, (u8_t)ths); #else return -ENOTSUP; #endif } static int fxos8700_attr_set(struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { if (chan != SENSOR_CHAN_ALL) { return -ENOTSUP; } if (attr == SENSOR_ATTR_SAMPLING_FREQUENCY) { return fxos8700_set_odr(dev, val); } else if (attr == SENSOR_ATTR_SLOPE_TH) { return fxos8700_set_mt_ths(dev, val); } else { return -ENOTSUP; } return 0; } static int fxos8700_sample_fetch(struct device *dev, enum sensor_channel chan) { const struct fxos8700_config *config = dev->config_info; struct fxos8700_data *data = dev->driver_data; u8_t buffer[FXOS8700_MAX_NUM_BYTES]; u8_t num_bytes; s16_t *raw; int ret = 0; int i; if (chan != SENSOR_CHAN_ALL) { LOG_ERR("Unsupported sensor channel"); return -ENOTSUP; } k_sem_take(&data->sem, K_FOREVER); /* Read all the channels in one I2C transaction. The number of bytes to * read and the starting register address depend on the mode * configuration (accel-only, mag-only, or hybrid). */ num_bytes = config->num_channels * FXOS8700_BYTES_PER_CHANNEL_NORMAL; __ASSERT(num_bytes <= sizeof(buffer), "Too many bytes to read"); if (i2c_burst_read(data->i2c, config->i2c_address, config->start_addr, buffer, num_bytes)) { LOG_ERR("Could not fetch sample"); ret = -EIO; goto exit; } /* Parse the buffer into raw channel data (16-bit integers). To save * RAM, store the data in raw format and wait to convert to the * normalized sensor_value type until later. */ __ASSERT(config->start_channel + config->num_channels <= ARRAY_SIZE(data->raw), "Too many channels"); raw = &data->raw[config->start_channel]; for (i = 0; i < num_bytes; i += 2) { *raw++ = (buffer[i] << 8) | (buffer[i+1]); } #ifdef CONFIG_FXOS8700_TEMP if (i2c_reg_read_byte(data->i2c, config->i2c_address, FXOS8700_REG_TEMP, &data->temp)) { LOG_ERR("Could not fetch temperature"); ret = -EIO; goto exit; } #endif exit: k_sem_give(&data->sem); return ret; } static void fxos8700_accel_convert(struct sensor_value *val, s16_t raw, enum fxos8700_range range) { u8_t frac_bits; s64_t micro_ms2; /* The range encoding is convenient to compute the number of fractional * bits: * - 2g mode (range = 0) has 14 fractional bits * - 4g mode (range = 1) has 13 fractional bits * - 8g mode (range = 2) has 12 fractional bits */ frac_bits = 14 - range; /* Convert units to micro m/s^2. Intermediate results before the shift * are 40 bits wide. */ micro_ms2 = (raw * SENSOR_G) >> frac_bits; /* The maximum possible value is 8g, which in units of micro m/s^2 * always fits into 32-bits. Cast down to s32_t so we can use a * faster divide. */ val->val1 = (s32_t) micro_ms2 / 1000000; val->val2 = (s32_t) micro_ms2 % 1000000; } static void fxos8700_magn_convert(struct sensor_value *val, s16_t raw) { s32_t micro_g; /* Convert units to micro Gauss. Raw magnetic data always has a * resolution of 0.1 uT/LSB, which is equivalent to 0.001 G/LSB. */ micro_g = raw * 1000; val->val1 = micro_g / 1000000; val->val2 = micro_g % 1000000; } #ifdef CONFIG_FXOS8700_TEMP static void fxos8700_temp_convert(struct sensor_value *val, s8_t raw) { s32_t micro_c; /* Convert units to micro Celsius. Raw temperature data always has a * resolution of 0.96 deg C/LSB. */ micro_c = raw * 960 * 1000; val->val1 = micro_c / 1000000; val->val2 = micro_c % 1000000; } #endif static int fxos8700_channel_get(struct device *dev, enum sensor_channel chan, struct sensor_value *val) { const struct fxos8700_config *config = dev->config_info; struct fxos8700_data *data = dev->driver_data; int start_channel; int num_channels; s16_t *raw; int ret; int i; k_sem_take(&data->sem, K_FOREVER); /* Start with an error return code by default, then clear it if we find * a supported sensor channel. */ ret = -ENOTSUP; /* If we're in an accelerometer-enabled mode (accel-only or hybrid), * then convert raw accelerometer data to the normalized sensor_value * type. */ if (config->mode != FXOS8700_MODE_MAGN) { switch (chan) { case SENSOR_CHAN_ACCEL_X: start_channel = FXOS8700_CHANNEL_ACCEL_X; num_channels = 1; break; case SENSOR_CHAN_ACCEL_Y: start_channel = FXOS8700_CHANNEL_ACCEL_Y; num_channels = 1; break; case SENSOR_CHAN_ACCEL_Z: start_channel = FXOS8700_CHANNEL_ACCEL_Z; num_channels = 1; break; case SENSOR_CHAN_ACCEL_XYZ: start_channel = FXOS8700_CHANNEL_ACCEL_X; num_channels = 3; break; default: start_channel = 0; num_channels = 0; break; } raw = &data->raw[start_channel]; for (i = 0; i < num_channels; i++) { fxos8700_accel_convert(val++, *raw++, config->range); } if (num_channels > 0) { ret = 0; } } /* If we're in an magnetometer-enabled mode (mag-only or hybrid), then * convert raw magnetometer data to the normalized sensor_value type. */ if (config->mode != FXOS8700_MODE_ACCEL) { switch (chan) { case SENSOR_CHAN_MAGN_X: start_channel = FXOS8700_CHANNEL_MAGN_X; num_channels = 1; break; case SENSOR_CHAN_MAGN_Y: start_channel = FXOS8700_CHANNEL_MAGN_Y; num_channels = 1; break; case SENSOR_CHAN_MAGN_Z: start_channel = FXOS8700_CHANNEL_MAGN_Z; num_channels = 1; break; case SENSOR_CHAN_MAGN_XYZ: start_channel = FXOS8700_CHANNEL_MAGN_X; num_channels = 3; break; default: start_channel = 0; num_channels = 0; break; } raw = &data->raw[start_channel]; for (i = 0; i < num_channels; i++) { fxos8700_magn_convert(val++, *raw++); } if (num_channels > 0) { ret = 0; } #ifdef CONFIG_FXOS8700_TEMP if (chan == SENSOR_CHAN_DIE_TEMP) { fxos8700_temp_convert(val, data->temp); ret = 0; } #endif } if (ret != 0) { LOG_ERR("Unsupported sensor channel"); } k_sem_give(&data->sem); return ret; } int fxos8700_get_power(struct device *dev, enum fxos8700_power *power) { const struct fxos8700_config *config = dev->config_info; struct fxos8700_data *data = dev->driver_data; u8_t val = *power; if (i2c_reg_read_byte(data->i2c, config->i2c_address, FXOS8700_REG_CTRLREG1, &val)) { LOG_ERR("Could not get power setting"); return -EIO; } val &= FXOS8700_M_CTRLREG1_MODE_MASK; *power = val; return 0; } int fxos8700_set_power(struct device *dev, enum fxos8700_power power) { const struct fxos8700_config *config = dev->config_info; struct fxos8700_data *data = dev->driver_data; return i2c_reg_update_byte(data->i2c, config->i2c_address, FXOS8700_REG_CTRLREG1, FXOS8700_CTRLREG1_ACTIVE_MASK, power); } static int fxos8700_init(struct device *dev) { const struct fxos8700_config *config = dev->config_info; struct fxos8700_data *data = dev->driver_data; struct sensor_value odr = {.val1 = 6, .val2 = 250000}; struct device *rst; /* Get the I2C device */ data->i2c = device_get_binding(config->i2c_name); if (data->i2c == NULL) { LOG_ERR("Could not find I2C device"); return -EINVAL; } if (config->reset_name) { /* Pulse RST pin high to perform a hardware reset of * the sensor. */ rst = device_get_binding(config->reset_name); if (!rst) { LOG_ERR("Could not find reset GPIO device"); return -EINVAL; } gpio_pin_configure(rst, config->reset_pin, GPIO_OUTPUT_INACTIVE | config->reset_flags); gpio_pin_set(rst, config->reset_pin, 1); /* The datasheet does not mention how long to pulse * the RST pin high in order to reset. Stay on the * safe side and pulse for 1 millisecond. */ k_busy_wait(USEC_PER_MSEC); gpio_pin_set(rst, config->reset_pin, 0); } else { /* Software reset the sensor. Upon issuing a software * reset command over the I2C interface, the sensor * immediately resets and does not send any * acknowledgment (ACK) of the written byte to the * master. Therefore, do not check the return code of * the I2C transaction. */ i2c_reg_write_byte(data->i2c, config->i2c_address, FXOS8700_REG_CTRLREG2, FXOS8700_CTRLREG2_RST_MASK); } /* The sensor requires us to wait 1 ms after a reset before * attempting further communications. */ k_busy_wait(USEC_PER_MSEC); /* * Read the WHOAMI register to make sure we are talking to FXOS8700 or * compatible device and not some other type of device that happens to * have the same I2C address. */ if (i2c_reg_read_byte(data->i2c, config->i2c_address, FXOS8700_REG_WHOAMI, &data->whoami)) { LOG_ERR("Could not get WHOAMI value"); return -EIO; } switch (data->whoami) { case WHOAMI_ID_MMA8451: case WHOAMI_ID_MMA8652: case WHOAMI_ID_MMA8653: if (config->mode != FXOS8700_MODE_ACCEL) { LOG_ERR("Device 0x%x supports only " "accelerometer mode", data->whoami); return -EIO; } break; case WHOAMI_ID_FXOS8700: LOG_DBG("Device ID 0x%x", data->whoami); break; default: LOG_ERR("Unknown Device ID 0x%x", data->whoami); return -EIO; } if (fxos8700_set_odr(dev, &odr)) { LOG_ERR("Could not set default data rate"); return -EIO; } if (i2c_reg_update_byte(data->i2c, config->i2c_address, FXOS8700_REG_CTRLREG2, FXOS8700_CTRLREG2_MODS_MASK, config->power_mode)) { LOG_ERR("Could not set power scheme"); return -EIO; } /* Set the mode (accel-only, mag-only, or hybrid) */ if (i2c_reg_update_byte(data->i2c, config->i2c_address, FXOS8700_REG_M_CTRLREG1, FXOS8700_M_CTRLREG1_MODE_MASK, config->mode)) { LOG_ERR("Could not set mode"); return -EIO; } /* Set hybrid autoincrement so we can read accel and mag channels in * one I2C transaction. */ if (i2c_reg_update_byte(data->i2c, config->i2c_address, FXOS8700_REG_M_CTRLREG2, FXOS8700_M_CTRLREG2_AUTOINC_MASK, FXOS8700_M_CTRLREG2_AUTOINC_MASK)) { LOG_ERR("Could not set hybrid autoincrement"); return -EIO; } /* Set the full-scale range */ if (i2c_reg_update_byte(data->i2c, config->i2c_address, FXOS8700_REG_XYZ_DATA_CFG, FXOS8700_XYZ_DATA_CFG_FS_MASK, config->range)) { LOG_ERR("Could not set range"); return -EIO; } k_sem_init(&data->sem, 0, UINT_MAX); #if CONFIG_FXOS8700_TRIGGER if (fxos8700_trigger_init(dev)) { LOG_ERR("Could not initialize interrupts"); return -EIO; } #endif /* Set active */ if (fxos8700_set_power(dev, FXOS8700_POWER_ACTIVE)) { LOG_ERR("Could not set active"); return -EIO; } k_sem_give(&data->sem); LOG_DBG("Init complete"); return 0; } static const struct sensor_driver_api fxos8700_driver_api = { .sample_fetch = fxos8700_sample_fetch, .channel_get = fxos8700_channel_get, .attr_set = fxos8700_attr_set, #if CONFIG_FXOS8700_TRIGGER .trigger_set = fxos8700_trigger_set, #endif }; static const struct fxos8700_config fxos8700_config = { .i2c_name = DT_INST_BUS_LABEL(0), .i2c_address = DT_INST_REG_ADDR(0), #if DT_INST_NODE_HAS_PROP(0, reset_gpios) .reset_name = DT_INST_GPIO_LABEL(0, reset_gpios), .reset_pin = DT_INST_GPIO_PIN(0, reset_gpios), .reset_flags = DT_INST_GPIO_FLAGS(0, reset_gpios), #else .reset_name = NULL, .reset_pin = 0, .reset_flags = 0, #endif #ifdef CONFIG_FXOS8700_MODE_ACCEL .mode = FXOS8700_MODE_ACCEL, .start_addr = FXOS8700_REG_OUTXMSB, .start_channel = FXOS8700_CHANNEL_ACCEL_X, .num_channels = FXOS8700_NUM_ACCEL_CHANNELS, #elif CONFIG_FXOS8700_MODE_MAGN .mode = FXOS8700_MODE_MAGN, .start_addr = FXOS8700_REG_M_OUTXMSB, .start_channel = FXOS8700_CHANNEL_MAGN_X, .num_channels = FXOS8700_NUM_MAG_CHANNELS, #else .mode = FXOS8700_MODE_HYBRID, .start_addr = FXOS8700_REG_OUTXMSB, .start_channel = FXOS8700_CHANNEL_ACCEL_X, .num_channels = FXOS8700_NUM_HYBRID_CHANNELS, #endif #if CONFIG_FXOS8700_PM_NORMAL .power_mode = FXOS8700_PM_NORMAL, #elif CONFIG_FXOS8700_PM_LOW_NOISE_LOW_POWER .power_mode = FXOS8700_PM_LOW_NOISE_LOW_POWER, #elif CONFIG_FXOS8700_PM_HIGH_RESOLUTION .power_mode = FXOS8700_PM_HIGH_RESOLUTION, #else .power_mode = FXOS8700_PM_LOW_POWER, #endif #if CONFIG_FXOS8700_RANGE_8G .range = FXOS8700_RANGE_8G, #elif CONFIG_FXOS8700_RANGE_4G .range = FXOS8700_RANGE_4G, #else .range = FXOS8700_RANGE_2G, #endif #ifdef CONFIG_FXOS8700_TRIGGER #ifdef CONFIG_FXOS8700_DRDY_INT1 .gpio_name = DT_INST_GPIO_LABEL(0, int1_gpios), .gpio_pin = DT_INST_GPIO_PIN(0, int1_gpios), .gpio_flags = DT_INST_GPIO_FLAGS(0, int1_gpios), #else .gpio_name = DT_INST_GPIO_LABEL(0, int2_gpios), .gpio_pin = DT_INST_GPIO_PIN(0, int2_gpios), .gpio_flags = DT_INST_GPIO_FLAGS(0, int2_gpios), #endif #endif #ifdef CONFIG_FXOS8700_PULSE .pulse_cfg = CONFIG_FXOS8700_PULSE_CFG, .pulse_ths[0] = CONFIG_FXOS8700_PULSE_THSX, .pulse_ths[1] = CONFIG_FXOS8700_PULSE_THSY, .pulse_ths[2] = CONFIG_FXOS8700_PULSE_THSZ, .pulse_tmlt = CONFIG_FXOS8700_PULSE_TMLT, .pulse_ltcy = CONFIG_FXOS8700_PULSE_LTCY, .pulse_wind = CONFIG_FXOS8700_PULSE_WIND, #endif }; static struct fxos8700_data fxos8700_data; DEVICE_AND_API_INIT(fxos8700, DT_INST_LABEL(0), fxos8700_init, &fxos8700_data, &fxos8700_config, POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY, &fxos8700_driver_api);