/* * Copyright (c) 2018 Workaround GmbH * Copyright (c) 2018 Allterco Robotics * Copyright (c) 2018 Linaro Limited * * SPDX-License-Identifier: Apache-2.0 * * Source file for the STM32 RTC driver * */ #define DT_DRV_COMPAT st_stm32_rtc #include #include #include #include #include #include #include #include #include "stm32_hsem.h" LOG_MODULE_REGISTER(counter_rtc_stm32, CONFIG_COUNTER_LOG_LEVEL); #define T_TIME_OFFSET 946684800 #if defined(CONFIG_SOC_SERIES_STM32L4X) #define RTC_EXTI_LINE LL_EXTI_LINE_18 #elif defined(CONFIG_SOC_SERIES_STM32F4X) \ || defined(CONFIG_SOC_SERIES_STM32F0X) \ || defined(CONFIG_SOC_SERIES_STM32F2X) \ || defined(CONFIG_SOC_SERIES_STM32F3X) \ || defined(CONFIG_SOC_SERIES_STM32F7X) \ || defined(CONFIG_SOC_SERIES_STM32WBX) \ || defined(CONFIG_SOC_SERIES_STM32G4X) \ || defined(CONFIG_SOC_SERIES_STM32L0X) \ || defined(CONFIG_SOC_SERIES_STM32L1X) \ || defined(CONFIG_SOC_SERIES_STM32H7X) #define RTC_EXTI_LINE LL_EXTI_LINE_17 #endif struct rtc_stm32_config { struct counter_config_info counter_info; struct stm32_pclken pclken; LL_RTC_InitTypeDef ll_rtc_config; }; struct rtc_stm32_data { counter_alarm_callback_t callback; uint32_t ticks; void *user_data; }; #define DEV_DATA(dev) ((struct rtc_stm32_data *)(dev)->driver_data) #define DEV_CFG(dev) \ ((const struct rtc_stm32_config * const)(dev)->config_info) static void rtc_stm32_irq_config(struct device *dev); static int rtc_stm32_start(struct device *dev) { ARG_UNUSED(dev); z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); LL_RCC_EnableRTC(); z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); return 0; } static int rtc_stm32_stop(struct device *dev) { ARG_UNUSED(dev); z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); LL_RCC_DisableRTC(); z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); return 0; } static uint32_t rtc_stm32_read(struct device *dev) { struct tm now = { 0 }; time_t ts; uint32_t rtc_date, rtc_time, ticks; ARG_UNUSED(dev); /* Read time and date registers */ rtc_time = LL_RTC_TIME_Get(RTC); rtc_date = LL_RTC_DATE_Get(RTC); /* Convert calendar datetime to UNIX timestamp */ /* RTC start time: 1st, Jan, 2000 */ /* time_t start: 1st, Jan, 1900 */ now.tm_year = 100 + __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_YEAR(rtc_date)); /* tm_mon allowed values are 0-11 */ now.tm_mon = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MONTH(rtc_date)) - 1; now.tm_mday = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_DAY(rtc_date)); now.tm_hour = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_HOUR(rtc_time)); now.tm_min = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_MINUTE(rtc_time)); now.tm_sec = __LL_RTC_CONVERT_BCD2BIN(__LL_RTC_GET_SECOND(rtc_time)); ts = mktime(&now); /* Return number of seconds since RTC init */ ts -= T_TIME_OFFSET; __ASSERT(sizeof(time_t) == 8, "unexpected time_t definition"); ticks = counter_us_to_ticks(dev, ts * USEC_PER_SEC); return ticks; } static int rtc_stm32_get_value(struct device *dev, uint32_t *ticks) { *ticks = rtc_stm32_read(dev); return 0; } static int rtc_stm32_set_alarm(struct device *dev, uint8_t chan_id, const struct counter_alarm_cfg *alarm_cfg) { struct tm alarm_tm; time_t alarm_val; LL_RTC_AlarmTypeDef rtc_alarm; struct rtc_stm32_data *data = DEV_DATA(dev); uint32_t now = rtc_stm32_read(dev); uint32_t ticks = alarm_cfg->ticks; if (data->callback != NULL) { LOG_DBG("Alarm busy\n"); return -EBUSY; } data->callback = alarm_cfg->callback; data->user_data = alarm_cfg->user_data; if ((alarm_cfg->flags & COUNTER_ALARM_CFG_ABSOLUTE) == 0) { /* Add +1 in order to compensate the partially started tick. * Alarm will expire between requested ticks and ticks+1. * In case only 1 tick is requested, it will avoid * that tick+1 event occurs before alarm setting is finished. */ ticks += now + 1; } LOG_DBG("Set Alarm: %d\n", ticks); alarm_val = (time_t)(counter_ticks_to_us(dev, ticks) / USEC_PER_SEC); gmtime_r(&alarm_val, &alarm_tm); /* Apply ALARM_A */ rtc_alarm.AlarmTime.TimeFormat = LL_RTC_TIME_FORMAT_AM_OR_24; rtc_alarm.AlarmTime.Hours = alarm_tm.tm_hour; rtc_alarm.AlarmTime.Minutes = alarm_tm.tm_min; rtc_alarm.AlarmTime.Seconds = alarm_tm.tm_sec; rtc_alarm.AlarmMask = LL_RTC_ALMA_MASK_NONE; rtc_alarm.AlarmDateWeekDaySel = LL_RTC_ALMA_DATEWEEKDAYSEL_DATE; rtc_alarm.AlarmDateWeekDay = alarm_tm.tm_mday; LL_RTC_DisableWriteProtection(RTC); LL_RTC_ALMA_Disable(RTC); LL_RTC_EnableWriteProtection(RTC); if (LL_RTC_ALMA_Init(RTC, LL_RTC_FORMAT_BIN, &rtc_alarm) != SUCCESS) { return -EIO; } LL_RTC_DisableWriteProtection(RTC); LL_RTC_ALMA_Enable(RTC); LL_RTC_ClearFlag_ALRA(RTC); LL_RTC_EnableIT_ALRA(RTC); LL_RTC_EnableWriteProtection(RTC); return 0; } static int rtc_stm32_cancel_alarm(struct device *dev, uint8_t chan_id) { LL_RTC_DisableWriteProtection(RTC); LL_RTC_ClearFlag_ALRA(RTC); LL_RTC_DisableIT_ALRA(RTC); LL_RTC_ALMA_Disable(RTC); LL_RTC_EnableWriteProtection(RTC); DEV_DATA(dev)->callback = NULL; return 0; } static uint32_t rtc_stm32_get_pending_int(struct device *dev) { return LL_RTC_IsActiveFlag_ALRA(RTC) != 0; } static uint32_t rtc_stm32_get_top_value(struct device *dev) { const struct counter_config_info *info = dev->config_info; return info->max_top_value; } static int rtc_stm32_set_top_value(struct device *dev, const struct counter_top_cfg *cfg) { const struct counter_config_info *info = dev->config_info; if ((cfg->ticks != info->max_top_value) || !(cfg->flags & COUNTER_TOP_CFG_DONT_RESET)) { return -ENOTSUP; } else { return 0; } } static uint32_t rtc_stm32_get_max_relative_alarm(struct device *dev) { const struct counter_config_info *info = dev->config_info; return info->max_top_value; } void rtc_stm32_isr(void *arg) { struct device *const dev = (struct device *)arg; struct rtc_stm32_data *data = DEV_DATA(dev); counter_alarm_callback_t alarm_callback = data->callback; uint32_t now = rtc_stm32_read(dev); if (LL_RTC_IsActiveFlag_ALRA(RTC) != 0) { LL_RTC_DisableWriteProtection(RTC); LL_RTC_ClearFlag_ALRA(RTC); LL_RTC_DisableIT_ALRA(RTC); LL_RTC_ALMA_Disable(RTC); LL_RTC_EnableWriteProtection(RTC); if (alarm_callback != NULL) { data->callback = NULL; alarm_callback(dev, 0, now, data->user_data); } } #if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4) LL_C2_EXTI_ClearFlag_0_31(RTC_EXTI_LINE); #else LL_EXTI_ClearFlag_0_31(RTC_EXTI_LINE); #endif } static int rtc_stm32_init(struct device *dev) { struct device *clk = device_get_binding(STM32_CLOCK_CONTROL_NAME); const struct rtc_stm32_config *cfg = DEV_CFG(dev); __ASSERT_NO_MSG(clk); DEV_DATA(dev)->callback = NULL; clock_control_on(clk, (clock_control_subsys_t *) &cfg->pclken); z_stm32_hsem_lock(CFG_HW_RCC_SEMID, HSEM_LOCK_DEFAULT_RETRY); LL_PWR_EnableBkUpAccess(); LL_RCC_ForceBackupDomainReset(); LL_RCC_ReleaseBackupDomainReset(); #if defined(CONFIG_COUNTER_RTC_STM32_CLOCK_LSI) #if defined(CONFIG_SOC_SERIES_STM32WBX) LL_RCC_LSI1_Enable(); while (LL_RCC_LSI1_IsReady() != 1) { } #else LL_RCC_LSI_Enable(); while (LL_RCC_LSI_IsReady() != 1) { } #endif /* CONFIG_SOC_SERIES_STM32WBX */ LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSI); #else /* CONFIG_COUNTER_RTC_STM32_CLOCK_LSE */ #if !defined(CONFIG_SOC_SERIES_STM32F4X) && \ !defined(CONFIG_SOC_SERIES_STM32F2X) && \ !defined(CONFIG_SOC_SERIES_STM32L1X) LL_RCC_LSE_SetDriveCapability( CONFIG_COUNTER_RTC_STM32_LSE_DRIVE_STRENGTH); #endif /* * !CONFIG_SOC_SERIES_STM32F4X * && !CONFIG_SOC_SERIES_STM32F2X * && !CONFIG_SOC_SERIES_STM32L1X */ #if defined(CONFIG_COUNTER_RTC_STM32_LSE_BYPASS) LL_RCC_LSE_EnableBypass(); #endif /* CONFIG_COUNTER_RTC_STM32_LSE_BYPASS */ LL_RCC_LSE_Enable(); /* Wait until LSE is ready */ while (LL_RCC_LSE_IsReady() != 1) { } LL_RCC_SetRTCClockSource(LL_RCC_RTC_CLKSOURCE_LSE); #endif /* CONFIG_COUNTER_RTC_STM32_CLOCK_SRC */ LL_RCC_EnableRTC(); z_stm32_hsem_unlock(CFG_HW_RCC_SEMID); if (LL_RTC_DeInit(RTC) != SUCCESS) { return -EIO; } if (LL_RTC_Init(RTC, ((LL_RTC_InitTypeDef *) &cfg->ll_rtc_config)) != SUCCESS) { return -EIO; } #ifdef RTC_CR_BYPSHAD LL_RTC_DisableWriteProtection(RTC); LL_RTC_EnableShadowRegBypass(RTC); LL_RTC_EnableWriteProtection(RTC); #endif /* RTC_CR_BYPSHAD */ #if defined(CONFIG_SOC_SERIES_STM32H7X) && defined(CONFIG_CPU_CORTEX_M4) LL_C2_EXTI_EnableIT_0_31(RTC_EXTI_LINE); #else LL_EXTI_EnableIT_0_31(RTC_EXTI_LINE); #endif LL_EXTI_EnableRisingTrig_0_31(RTC_EXTI_LINE); rtc_stm32_irq_config(dev); return 0; } static struct rtc_stm32_data rtc_data; static const struct rtc_stm32_config rtc_config = { .counter_info = { .max_top_value = UINT32_MAX, .freq = 1, .flags = COUNTER_CONFIG_INFO_COUNT_UP, .channels = 1, }, .pclken = { .enr = DT_INST_CLOCKS_CELL(0, bits), .bus = DT_INST_CLOCKS_CELL(0, bus), }, .ll_rtc_config = { .HourFormat = LL_RTC_HOURFORMAT_24HOUR, #if defined(CONFIG_COUNTER_RTC_STM32_CLOCK_LSI) /* prescaler values for LSI @ 32 KHz */ .AsynchPrescaler = 0x7F, .SynchPrescaler = 0x00F9, #else /* CONFIG_COUNTER_RTC_STM32_CLOCK_LSE */ /* prescaler values for LSE @ 32768 Hz */ .AsynchPrescaler = 0x7F, .SynchPrescaler = 0x00FF, #endif }, }; static const struct counter_driver_api rtc_stm32_driver_api = { .start = rtc_stm32_start, .stop = rtc_stm32_stop, .get_value = rtc_stm32_get_value, .set_alarm = rtc_stm32_set_alarm, .cancel_alarm = rtc_stm32_cancel_alarm, .set_top_value = rtc_stm32_set_top_value, .get_pending_int = rtc_stm32_get_pending_int, .get_top_value = rtc_stm32_get_top_value, .get_max_relative_alarm = rtc_stm32_get_max_relative_alarm, }; DEVICE_AND_API_INIT(rtc_stm32, DT_INST_LABEL(0), &rtc_stm32_init, &rtc_data, &rtc_config, PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &rtc_stm32_driver_api); static void rtc_stm32_irq_config(struct device *dev) { IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), rtc_stm32_isr, DEVICE_GET(rtc_stm32), 0); irq_enable(DT_INST_IRQN(0)); }