/* * Copyright (c) 2017 Google LLC. * Copyright (c) 2018 qianfan Zhao. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT atmel_sam_spi #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL #include LOG_MODULE_REGISTER(spi_sam); #include "spi_context.h" #include #include #include #include #define SAM_SPI_CHIP_SELECT_COUNT 4 /* Device constant configuration parameters */ struct spi_sam_config { Spi *regs; uint32_t periph_id; uint32_t num_pins; struct soc_gpio_pin pins[]; }; /* Device run time data */ struct spi_sam_data { struct spi_context ctx; }; static int spi_slave_to_mr_pcs(int slave) { int pcs[SAM_SPI_CHIP_SELECT_COUNT] = {0x0, 0x1, 0x3, 0x7}; /* SPI worked in fixed perieral mode(SPI_MR.PS = 0) and disabled chip * select decode(SPI_MR.PCSDEC = 0), based on Atmel | SMART ARM-based * Flash MCU DATASHEET 40.8.2 SPI Mode Register: * PCS = xxx0 NPCS[3:0] = 1110 * PCS = xx01 NPCS[3:0] = 1101 * PCS = x011 NPCS[3:0] = 1011 * PCS = 0111 NPCS[3:0] = 0111 */ return pcs[slave]; } static int spi_sam_configure(struct device *dev, const struct spi_config *config) { const struct spi_sam_config *cfg = dev->config_info; struct spi_sam_data *data = dev->driver_data; Spi *regs = cfg->regs; uint32_t spi_mr = 0U, spi_csr = 0U; int div; if (spi_context_configured(&data->ctx, config)) { return 0; } if (SPI_OP_MODE_GET(config->operation) != SPI_OP_MODE_MASTER) { /* Slave mode is not implemented. */ return -ENOTSUP; } if (config->slave > (SAM_SPI_CHIP_SELECT_COUNT - 1)) { LOG_ERR("Slave %d is greater than %d", config->slave, SAM_SPI_CHIP_SELECT_COUNT - 1); return -EINVAL; } /* Set master mode, disable mode fault detection, set fixed peripheral * select mode. */ spi_mr |= (SPI_MR_MSTR | SPI_MR_MODFDIS); spi_mr |= SPI_MR_PCS(spi_slave_to_mr_pcs(config->slave)); if ((config->operation & SPI_MODE_CPOL) != 0U) { spi_csr |= SPI_CSR_CPOL; } if ((config->operation & SPI_MODE_CPHA) == 0U) { spi_csr |= SPI_CSR_NCPHA; } if (SPI_WORD_SIZE_GET(config->operation) != 8) { return -ENOTSUP; } else { spi_csr |= SPI_CSR_BITS(SPI_CSR_BITS_8_BIT); } /* Use the requested or next highest possible frequency */ div = SOC_ATMEL_SAM_MCK_FREQ_HZ / config->frequency; div = MAX(1, MIN(UINT8_MAX, div)); spi_csr |= SPI_CSR_SCBR(div); regs->SPI_CR = SPI_CR_SPIDIS; /* Disable SPI */ regs->SPI_MR = spi_mr; regs->SPI_CSR[config->slave] = spi_csr; regs->SPI_CR = SPI_CR_SPIEN; /* Enable SPI */ data->ctx.config = config; spi_context_cs_configure(&data->ctx); return 0; } static bool spi_sam_transfer_ongoing(struct spi_sam_data *data) { return spi_context_tx_on(&data->ctx) || spi_context_rx_on(&data->ctx); } static void spi_sam_shift_master(Spi *regs, struct spi_sam_data *data) { uint8_t tx; uint8_t rx; if (spi_context_tx_buf_on(&data->ctx)) { tx = *(uint8_t *)(data->ctx.tx_buf); } else { tx = 0U; } while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { } regs->SPI_TDR = SPI_TDR_TD(tx); spi_context_update_tx(&data->ctx, 1, 1); while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } rx = (uint8_t)regs->SPI_RDR; if (spi_context_rx_buf_on(&data->ctx)) { *data->ctx.rx_buf = rx; } spi_context_update_rx(&data->ctx, 1, 1); } /* Finish any ongoing writes and drop any remaining read data */ static void spi_sam_finish(Spi *regs) { while ((regs->SPI_SR & SPI_SR_TXEMPTY) == 0) { } while (regs->SPI_SR & SPI_SR_RDRF) { (void)regs->SPI_RDR; } } /* Fast path that transmits a buf */ static void spi_sam_fast_tx(Spi *regs, const struct spi_buf *tx_buf) { const uint8_t *p = tx_buf->buf; const uint8_t *pend = (uint8_t *)tx_buf->buf + tx_buf->len; uint8_t ch; while (p != pend) { ch = *p++; while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { } regs->SPI_TDR = SPI_TDR_TD(ch); } spi_sam_finish(regs); } /* Fast path that reads into a buf */ static void spi_sam_fast_rx(Spi *regs, const struct spi_buf *rx_buf) { uint8_t *rx = rx_buf->buf; int len = rx_buf->len; if (len <= 0) { return; } /* See the comment in spi_sam_fast_txrx re: interleaving. */ /* Write the first byte */ regs->SPI_TDR = SPI_TDR_TD(0); len--; while (len) { while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { } /* Load byte N+1 into the transmit register */ regs->SPI_TDR = SPI_TDR_TD(0); len--; /* Read byte N+0 from the receive register */ while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } *rx++ = (uint8_t)regs->SPI_RDR; } /* Read the final incoming byte */ while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } *rx = (uint8_t)regs->SPI_RDR; spi_sam_finish(regs); } /* Fast path that writes and reads bufs of the same length */ static void spi_sam_fast_txrx(Spi *regs, const struct spi_buf *tx_buf, const struct spi_buf *rx_buf) { const uint8_t *tx = tx_buf->buf; const uint8_t *txend = (uint8_t *)tx_buf->buf + tx_buf->len; uint8_t *rx = rx_buf->buf; size_t len = rx_buf->len; if (len == 0) { return; } /* * The code below interleaves the transmit writes with the * receive reads to keep the bus fully utilised. The code is * equivalent to: * * Transmit byte 0 * Loop: * - Transmit byte n+1 * - Receive byte n * Receive the final byte */ /* Write the first byte */ regs->SPI_TDR = SPI_TDR_TD(*tx++); while (tx != txend) { while ((regs->SPI_SR & SPI_SR_TDRE) == 0) { } /* Load byte N+1 into the transmit register. TX is * single buffered and we have at most one byte in * flight so skip the DRE check. */ regs->SPI_TDR = SPI_TDR_TD(*tx++); /* Read byte N+0 from the receive register */ while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } *rx++ = (uint8_t)regs->SPI_RDR; } /* Read the final incoming byte */ while ((regs->SPI_SR & SPI_SR_RDRF) == 0) { } *rx = (uint8_t)regs->SPI_RDR; spi_sam_finish(regs); } /* Fast path where every overlapping tx and rx buffer is the same length */ static void spi_sam_fast_transceive(struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { const struct spi_sam_config *cfg = dev->config_info; size_t tx_count = 0; size_t rx_count = 0; Spi *regs = cfg->regs; const struct spi_buf *tx = NULL; const struct spi_buf *rx = NULL; if (tx_bufs) { tx = tx_bufs->buffers; tx_count = tx_bufs->count; } if (rx_bufs) { rx = rx_bufs->buffers; rx_count = rx_bufs->count; } while (tx_count != 0 && rx_count != 0) { if (tx->buf == NULL) { spi_sam_fast_rx(regs, rx); } else if (rx->buf == NULL) { spi_sam_fast_tx(regs, tx); } else { spi_sam_fast_txrx(regs, tx, rx); } tx++; tx_count--; rx++; rx_count--; } for (; tx_count != 0; tx_count--) { spi_sam_fast_tx(regs, tx++); } for (; rx_count != 0; rx_count--) { spi_sam_fast_rx(regs, rx++); } } /* Returns true if the request is suitable for the fast * path. Specifically, the bufs are a sequence of: * * - Zero or more RX and TX buf pairs where each is the same length. * - Zero or more trailing RX only bufs * - Zero or more trailing TX only bufs */ static bool spi_sam_is_regular(const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { const struct spi_buf *tx = NULL; const struct spi_buf *rx = NULL; size_t tx_count = 0; size_t rx_count = 0; if (tx_bufs) { tx = tx_bufs->buffers; tx_count = tx_bufs->count; } if (rx_bufs) { rx = rx_bufs->buffers; rx_count = rx_bufs->count; } if (!tx || !rx) { return true; } while (tx_count != 0 && rx_count != 0) { if (tx->len != rx->len) { return false; } tx++; tx_count--; rx++; rx_count--; } return true; } static int spi_sam_transceive(struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { const struct spi_sam_config *cfg = dev->config_info; struct spi_sam_data *data = dev->driver_data; Spi *regs = cfg->regs; int err; spi_context_lock(&data->ctx, false, NULL); err = spi_sam_configure(dev, config); if (err != 0) { goto done; } spi_context_cs_control(&data->ctx, true); /* This driver special cases the common send only, receive * only, and transmit then receive operations. This special * casing is 4x faster than the spi_context() routines * and allows the transmit and receive to be interleaved. */ if (spi_sam_is_regular(tx_bufs, rx_bufs)) { spi_sam_fast_transceive(dev, config, tx_bufs, rx_bufs); } else { spi_context_buffers_setup(&data->ctx, tx_bufs, rx_bufs, 1); do { spi_sam_shift_master(regs, data); } while (spi_sam_transfer_ongoing(data)); } spi_context_cs_control(&data->ctx, false); done: spi_context_release(&data->ctx, err); return err; } static int spi_sam_transceive_sync(struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { return spi_sam_transceive(dev, config, tx_bufs, rx_bufs); } #ifdef CONFIG_SPI_ASYNC static int spi_sam_transceive_async(struct device *dev, const struct spi_config *config, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, struct k_poll_signal *async) { /* TODO: implement asyc transceive */ return -ENOTSUP; } #endif /* CONFIG_SPI_ASYNC */ static int spi_sam_release(struct device *dev, const struct spi_config *config) { struct spi_sam_data *data = dev->driver_data; spi_context_unlock_unconditionally(&data->ctx); return 0; } static int spi_sam_init(struct device *dev) { const struct spi_sam_config *cfg = dev->config_info; struct spi_sam_data *data = dev->driver_data; soc_pmc_peripheral_enable(cfg->periph_id); soc_gpio_list_configure(cfg->pins, cfg->num_pins); spi_context_unlock_unconditionally(&data->ctx); /* The device will be configured and enabled when transceive * is called. */ return 0; } static const struct spi_driver_api spi_sam_driver_api = { .transceive = spi_sam_transceive_sync, #ifdef CONFIG_SPI_ASYNC .transceive_async = spi_sam_transceive_async, #endif .release = spi_sam_release, }; #define SPI_SAM_DEFINE_CONFIG(n) \ static const struct spi_sam_config spi_sam_config_##n = { \ .regs = (Spi *)DT_INST_REG_ADDR(n), \ .periph_id = DT_INST_PROP(n, peripheral_id), \ .num_pins = ATMEL_SAM_DT_NUM_PINS(n), \ .pins = ATMEL_SAM_DT_PINS(n), \ } #define SPI_SAM_DEVICE_INIT(n) \ SPI_SAM_DEFINE_CONFIG(n); \ static struct spi_sam_data spi_sam_dev_data_##n = { \ SPI_CONTEXT_INIT_LOCK(spi_sam_dev_data_##n, ctx), \ SPI_CONTEXT_INIT_SYNC(spi_sam_dev_data_##n, ctx), \ }; \ DEVICE_AND_API_INIT(spi_sam_##n, \ DT_INST_LABEL(n), \ &spi_sam_init, &spi_sam_dev_data_##n, \ &spi_sam_config_##n, POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, &spi_sam_driver_api); DT_INST_FOREACH_STATUS_OKAY(SPI_SAM_DEVICE_INIT)