/* * Copyright (c) 2017 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ /** * @file * @brief Private API for SPI drivers */ #ifndef ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_ #define ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_ #include #include #ifdef __cplusplus extern "C" { #endif enum spi_ctx_runtime_op_mode { SPI_CTX_RUNTIME_OP_MODE_MASTER = BIT(0), SPI_CTX_RUNTIME_OP_MODE_SLAVE = BIT(1), }; struct spi_context { const struct spi_config *config; struct k_sem lock; struct k_sem sync; int sync_status; #ifdef CONFIG_SPI_ASYNC struct k_poll_signal *signal; bool asynchronous; #endif /* CONFIG_SPI_ASYNC */ const struct spi_buf *current_tx; size_t tx_count; const struct spi_buf *current_rx; size_t rx_count; const uint8_t *tx_buf; size_t tx_len; uint8_t *rx_buf; size_t rx_len; #ifdef CONFIG_SPI_SLAVE int recv_frames; #endif /* CONFIG_SPI_SLAVE */ }; #define SPI_CONTEXT_INIT_LOCK(_data, _ctx_name) \ ._ctx_name.lock = Z_SEM_INITIALIZER(_data._ctx_name.lock, 0, 1) #define SPI_CONTEXT_INIT_SYNC(_data, _ctx_name) \ ._ctx_name.sync = Z_SEM_INITIALIZER(_data._ctx_name.sync, 0, 1) static inline bool spi_context_configured(struct spi_context *ctx, const struct spi_config *config) { return !!(ctx->config == config); } static inline bool spi_context_is_slave(struct spi_context *ctx) { return (ctx->config->operation & SPI_OP_MODE_SLAVE); } static inline void spi_context_lock(struct spi_context *ctx, bool asynchronous, struct k_poll_signal *signal) { k_sem_take(&ctx->lock, K_FOREVER); #ifdef CONFIG_SPI_ASYNC ctx->asynchronous = asynchronous; ctx->signal = signal; #endif /* CONFIG_SPI_ASYNC */ } static inline void spi_context_release(struct spi_context *ctx, int status) { #ifdef CONFIG_SPI_SLAVE if (status >= 0 && (ctx->config->operation & SPI_LOCK_ON)) { return; } #endif /* CONFIG_SPI_SLAVE */ #ifdef CONFIG_SPI_ASYNC if (!ctx->asynchronous || (status < 0)) { k_sem_give(&ctx->lock); } #else k_sem_give(&ctx->lock); #endif /* CONFIG_SPI_ASYNC */ } static inline int spi_context_wait_for_completion(struct spi_context *ctx) { int status = 0; #ifdef CONFIG_SPI_ASYNC if (!ctx->asynchronous) { k_sem_take(&ctx->sync, K_FOREVER); status = ctx->sync_status; } #else k_sem_take(&ctx->sync, K_FOREVER); status = ctx->sync_status; #endif /* CONFIG_SPI_ASYNC */ #ifdef CONFIG_SPI_SLAVE if (spi_context_is_slave(ctx) && !status) { return ctx->recv_frames; } #endif /* CONFIG_SPI_SLAVE */ return status; } static inline void spi_context_complete(struct spi_context *ctx, int status) { #ifdef CONFIG_SPI_ASYNC if (!ctx->asynchronous) { ctx->sync_status = status; k_sem_give(&ctx->sync); } else { if (ctx->signal) { #ifdef CONFIG_SPI_SLAVE if (spi_context_is_slave(ctx) && !status) { /* Let's update the status so it tells * about number of received frames. */ status = ctx->recv_frames; } #endif /* CONFIG_SPI_SLAVE */ k_poll_signal_raise(ctx->signal, status); } if (!(ctx->config->operation & SPI_LOCK_ON)) { k_sem_give(&ctx->lock); } } #else ctx->sync_status = status; k_sem_give(&ctx->sync); #endif /* CONFIG_SPI_ASYNC */ } static inline gpio_dt_flags_t spi_context_cs_active_level(struct spi_context *ctx) { if (ctx->config->operation & SPI_CS_ACTIVE_HIGH) { return GPIO_ACTIVE_HIGH; } return GPIO_ACTIVE_LOW; } static inline void spi_context_cs_configure(struct spi_context *ctx) { if (ctx->config->cs && ctx->config->cs->gpio_dev) { /* Validate CS active levels are equivalent */ __ASSERT(spi_context_cs_active_level(ctx) == (ctx->config->cs->gpio_dt_flags & GPIO_ACTIVE_LOW), "Devicetree and spi_context CS levels are not equal"); gpio_pin_configure(ctx->config->cs->gpio_dev, ctx->config->cs->gpio_pin, ctx->config->cs->gpio_dt_flags | GPIO_OUTPUT_INACTIVE); } else { LOG_INF("CS control inhibited (no GPIO device)"); } } static inline void _spi_context_cs_control(struct spi_context *ctx, bool on, bool force_off) { if (ctx->config && ctx->config->cs && ctx->config->cs->gpio_dev) { if (on) { gpio_pin_set(ctx->config->cs->gpio_dev, ctx->config->cs->gpio_pin, 1); k_busy_wait(ctx->config->cs->delay); } else { if (!force_off && ctx->config->operation & SPI_HOLD_ON_CS) { return; } k_busy_wait(ctx->config->cs->delay); gpio_pin_set(ctx->config->cs->gpio_dev, ctx->config->cs->gpio_pin, 0); } } } static inline void spi_context_cs_control(struct spi_context *ctx, bool on) { _spi_context_cs_control(ctx, on, false); } static inline void spi_context_unlock_unconditionally(struct spi_context *ctx) { /* Forcing CS to go to inactive status */ _spi_context_cs_control(ctx, false, true); if (!k_sem_count_get(&ctx->lock)) { k_sem_give(&ctx->lock); } } static inline void spi_context_buffers_setup(struct spi_context *ctx, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, uint8_t dfs) { LOG_DBG("tx_bufs %p - rx_bufs %p - %u", tx_bufs, rx_bufs, dfs); if (tx_bufs) { ctx->current_tx = tx_bufs->buffers; ctx->tx_count = tx_bufs->count; ctx->tx_buf = (const uint8_t *)ctx->current_tx->buf; ctx->tx_len = ctx->current_tx->len / dfs; } else { ctx->current_tx = NULL; ctx->tx_count = 0; ctx->tx_buf = NULL; ctx->tx_len = 0; } if (rx_bufs) { ctx->current_rx = rx_bufs->buffers; ctx->rx_count = rx_bufs->count; ctx->rx_buf = (uint8_t *)ctx->current_rx->buf; ctx->rx_len = ctx->current_rx->len / dfs; } else { ctx->current_rx = NULL; ctx->rx_count = 0; ctx->rx_buf = NULL; ctx->rx_len = 0; } ctx->sync_status = 0; #ifdef CONFIG_SPI_SLAVE ctx->recv_frames = 0; #endif /* CONFIG_SPI_SLAVE */ LOG_DBG("current_tx %p (%zu), current_rx %p (%zu)," " tx buf/len %p/%zu, rx buf/len %p/%zu", ctx->current_tx, ctx->tx_count, ctx->current_rx, ctx->rx_count, ctx->tx_buf, ctx->tx_len, ctx->rx_buf, ctx->rx_len); } static ALWAYS_INLINE void spi_context_update_tx(struct spi_context *ctx, uint8_t dfs, uint32_t len) { if (!ctx->tx_len) { return; } if (len > ctx->tx_len) { LOG_ERR("Update exceeds current buffer"); return; } ctx->tx_len -= len; if (!ctx->tx_len) { ctx->tx_count--; if (ctx->tx_count) { ctx->current_tx++; ctx->tx_buf = (const uint8_t *)ctx->current_tx->buf; ctx->tx_len = ctx->current_tx->len / dfs; } else { ctx->tx_buf = NULL; } } else if (ctx->tx_buf) { ctx->tx_buf += dfs * len; } LOG_DBG("tx buf/len %p/%zu", ctx->tx_buf, ctx->tx_len); } static ALWAYS_INLINE bool spi_context_tx_on(struct spi_context *ctx) { return !!(ctx->tx_len); } static ALWAYS_INLINE bool spi_context_tx_buf_on(struct spi_context *ctx) { return !!(ctx->tx_buf && ctx->tx_len); } static ALWAYS_INLINE void spi_context_update_rx(struct spi_context *ctx, uint8_t dfs, uint32_t len) { #ifdef CONFIG_SPI_SLAVE if (spi_context_is_slave(ctx)) { ctx->recv_frames += len; } #endif /* CONFIG_SPI_SLAVE */ if (!ctx->rx_len) { return; } if (len > ctx->rx_len) { LOG_ERR("Update exceeds current buffer"); return; } ctx->rx_len -= len; if (!ctx->rx_len) { ctx->rx_count--; if (ctx->rx_count) { ctx->current_rx++; ctx->rx_buf = (uint8_t *)ctx->current_rx->buf; ctx->rx_len = ctx->current_rx->len / dfs; } else { ctx->rx_buf = NULL; } } else if (ctx->rx_buf) { ctx->rx_buf += dfs * len; } LOG_DBG("rx buf/len %p/%zu", ctx->rx_buf, ctx->rx_len); } static ALWAYS_INLINE bool spi_context_rx_on(struct spi_context *ctx) { return !!(ctx->rx_len); } static ALWAYS_INLINE bool spi_context_rx_buf_on(struct spi_context *ctx) { return !!(ctx->rx_buf && ctx->rx_len); } static inline size_t spi_context_longest_current_buf(struct spi_context *ctx) { if (!ctx->tx_len) { return ctx->rx_len; } else if (!ctx->rx_len) { return ctx->tx_len; } else if (ctx->tx_len < ctx->rx_len) { return ctx->tx_len; } return ctx->rx_len; } #ifdef __cplusplus } #endif #endif /* ZEPHYR_DRIVERS_SPI_SPI_CONTEXT_H_ */