This function, like its cousin z_tsc_read(), can be shared between
subarches. Note: it's unclear to me if we actually need these to be
two separate functions (do we need serialization?) or if they can
be combined into one function. Add that to the to-do list.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
First "complete" version of Intel64 support for x86. Compilation of
apps for supported boards (read: up_squared) with CONFIG_X86_LONGMODE=y
is now working. Booting, device drivers, interrupts, scheduling, etc.
appear to be functioning properly. Beware that this is ALHPA quality,
not ready for production use, but the port has advanced far enough that
it's time to start working through the test suite and samples, fleshing
out any missing features, and squashing bugs.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
Simplified these two inline functions somewhat, and refactored them:
unlocking can be shared between subarches, but locking cannot.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
Some of the elements of arch.h can be shared between subarches,
so put them in a common file and factor out the rest. Placeholder
left for the Intel64 definitions to be added later.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
Consistently place C++ use of extern "C" after all include directives,
within the negative branch of _ASMLANGUAGE if used.
Background from issue #17997:
Declarations that use C linkage should be placed within extern "C"
so the language linkage is correct when the header is included by
a C++ compiler.
Similarly #include directives should be outside the extern "C" to
ensure the language-specific default linkage is applied to any
declarations provided by the included header.
See: https://en.cppreference.com/w/cpp/language/language_linkage
Signed-off-by: Peter Bigot <peter.bigot@nordicsemi.no>
Makes the code that defines stacks, and code referencing
areas within the stack object, much clearer.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Previously, context switching on x86 with memory protection
enabled involved walking the page tables, de-configuring all
the partitions in the outgoing thread's memory domain, and
then configuring all the partitions in the incoming thread's
domain, on a global set of page tables.
We now have a much faster design. Each thread has reserved in
its stack object a number of pages to store page directories
and page tables pertaining to the system RAM area. Each
thread also has a toplevel PDPT which is configured to use
the per-thread tables for system RAM, and the global tables
for the rest of the address space.
The result of this is on context switch, at most we just have
to update the CR3 register to the incoming thread's PDPT.
The x86_mmu_api test was making too many assumptions and has
been adjusted to work with the new design.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Currently page tables have to be re-computed in
an expensive operation on context switch. Here we
reserve some room in the page tables such that
we can have per-thread page table data, which will
be much simpler to update on context switch at
the expense of memory.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This is now called z_arch_esf_t, conforming to our naming
convention.
This needs to remain a typedef due to how our offset generation
header mechanism works.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
* z_NanoFatalErrorHandler() is now moved to common kernel code
and renamed z_fatal_error(). Arches dump arch-specific info
before calling.
* z_SysFatalErrorHandler() is now moved to common kernel code
and renamed k_sys_fatal_error_handler(). It is now much simpler;
the default policy is simply to lock interrupts and halt the system.
If an implementation of this function returns, then the currently
running thread is aborted.
* New arch-specific APIs introduced:
- z_arch_system_halt() simply powers off or halts the system.
* We now have a standard set of fatal exception reason codes,
namespaced under K_ERR_*
* CONFIG_SIMPLE_FATAL_ERROR_HANDLER deleted
* LOG_PANIC() calls moved to k_sys_fatal_error_handler()
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The MVIC is no longer supported, and only the APIC-based interrupt
subsystem remains. Thus this layer of indirection is unnecessary.
This also corrects an oversight left over from the Jailhouse x2APIC
implementation affecting EOI delivery for direct ISRs only.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
These inlines currently only apply to IA32, so place accordingly.
Minor changes to direct and indirect users of the file for ordering.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
This file is only included from arch.h, so merge it into same. This
also avoids confusion with files in arch/x86/include/ of the same name.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
The compiler is going to make better per-arch/per-implementation
choices about bit operations, so let's use the common definitions.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
This header is currently IA32-specific, so move it into the subarch
directory and update references to it.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
Making room for the Intel64 subarch in this tree. This header is
32-bit specific and so it's relocated, and references rewritten
to find it in its new location.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>