This adds the necessary bits to enable memory mapping thread
stacks on both x86 and x86_64. Note that currently these do
not support multi level mappings (e.g. demand paging and
running in virtual address space: qemu_x86/atom/virt board)
as the mapped stacks require actual physical addresses.
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
MISRA C:2012 Rule 8.2 (Function types shall be in prototype form with
named parameters.)
Added missing parameter names.
Signed-off-by: Abramo Bagnara <abramo.bagnara@bugseng.com>
In order to bring consistency in-tree, migrate all arch code to the new
prefix <zephyr/...>. Note that the conversion has been scripted, refer
to zephyrproject-rtos#45388 for more details.
Signed-off-by: Gerard Marull-Paretas <gerard.marull@nordicsemi.no>
This adds arch_float_enable() and arch_float_disable() to x86-64.
As x86-64 always has FP/SSE enabled, these operations are basically
no-ops. These are added just for the completeness of arch interface.
Fixes#38022
Signed-off-by: Daniel Leung <daniel.leung@intel.com>
Both operands of an operator in which the usual arithmetic
conversions are performed shall have the same essential
type category.
Signed-off-by: Flavio Ceolin <flavio.ceolin@intel.com>
The x86_64 SysV ABI requires 16 byte alignment for the stack pointer
during execution of normal code. That means that on entry to an
ABI-compatible C function (which is reached via a CALL instruction
that pushes the return address) the RSP register must be MISaligned by
exactly 8 bytes. The kernel mode thread setup got this right, but we
missed the equivalent condition in userspace entry.
The end result was a misaligned stack, which is surprisingly robust
for most use. But recent toolchains have starting doing some more
elaborate vectorization, and the resulting SSE instructions started
failing in userspace on the misaliged loads.
Note that there's a comment about optimization: we're doing the stack
alignment in the "wrong place" and are needlessly wasting bytes in
some cases. We should see the raw stack boundaries where we are
setting up RSP values. Add a FIXME to this effect, but don't touch
anything as this patch is a targeted bugfix.
Also fix a somewhat embarassing 32-bit-ism that would have truncated
the address of a userspace stack that we tried to put above 4G.
Fixes#31018
Signed-off-by: Andy Ross <andrew.j.ross@intel.com>
The x86 paging code has been rewritten to support another paging mode
and non-identity virtual mappings.
- Paging code now uses an array of paging level characteristics and
walks tables using for loops. This is opposed to having different
functions for every paging level and lots of #ifdefs. The code is
now more concise and adding new paging modes should be trivial.
- We now support 32-bit, PAE, and IA-32e page tables.
- The page tables created by gen_mmu.py are now installed at early
boot. There are no longer separate "flat" page tables. These tables
are mutable at any time.
- The x86_mmu code now has a private header. Many definitions that did
not need to be in public scope have been moved out of mmustructs.h
and either placed in the C file or in the private header.
- Improvements to dumping page table information, with the physical
mapping and flags all shown
- arch_mem_map() implemented
- x86 userspace/memory domain code ported to use the new
infrastructure.
- add logic for physical -> virtual instruction pointer transition,
including cleaning up identity mappings after this takes place.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
These stacks are appropriate for threads that run purely in
supervisor mode, and also as stacks for interrupt and exception
handling.
Two new arch defines are introduced:
- ARCH_KERNEL_STACK_GUARD_SIZE
- ARCH_KERNEL_STACK_OBJ_ALIGN
New public declaration macros:
- K_KERNEL_STACK_RESERVED
- K_KERNEL_STACK_EXTERN
- K_KERNEL_STACK_DEFINE
- K_KERNEL_STACK_ARRAY_DEFINE
- K_KERNEL_STACK_MEMBER
- K_KERNEL_STACK_SIZEOF
If user mode is not enabled, K_KERNEL_STACK_* and K_THREAD_STACK_*
are equivalent.
Separately generated privilege elevation stacks are now declared
like kernel stacks, removing the need for K_PRIVILEGE_STACK_ALIGN.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The core kernel computes the initial stack pointer
for a thread, properly aligning it and subtracting out
any random offsets or thread-local storage areas.
arch_new_thread() no longer needs to make any calculations,
an initial stack frame may be placed at the bounds of
the new 'stack_ptr' parameter passed in. This parameter
replaces 'stack_size'.
thread->stack_info is now set before arch_new_thread()
is invoked, z_new_thread_init() has been removed.
The values populated may need to be adjusted on arches
which carve-out MPU guard space from the actual stack
buffer.
thread->stack_info now has a new member 'delta' which
indicates any offset applied for TLS or random offset.
It's used so the calculations don't need to be repeated
if the thread later drops to user mode.
CONFIG_INIT_STACKS logic is now performed inside
z_setup_new_thread(), before arch_new_thread() is called.
thread->stack_info is now defined as the canonical
user-accessible area within the stack object, including
random offsets and TLS. It will never include any
carved-out memory for MPU guards and must be updated at
runtime if guards are removed.
Available stack space is now optimized. Some arches may
need to significantly round up the buffer size to account
for page-level granularity or MPU power-of-two requirements.
This space is now accounted for and used by virtue of
the Z_THREAD_STACK_SIZE_ADJUST() call in z_setup_new_thread.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
MISRA-C wants the parameter names in a function implementaion
to match the names used by the header prototype.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
arch_new_thread() passes along the thread priority and option
flags, but these are already initialized in thread->base and
can be accessed there if needed.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
The core kernel z_setup_new_thread() calls into arch_new_thread(),
which calls back into the core kernel via z_new_thread_init().
Move everything that doesn't have to be in z_new_thread_init() to
z_setup_new_thread() and convert to an inline function.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Implement a set of per-cpu trampoline stacks which all
interrupts and exceptions will initially land on, and also
as an intermediate stack for privilege changes as we need
some stack space to swap page tables.
Set up the special trampoline page which contains all the
trampoline stacks, TSS, and GDT. This page needs to be
present in the user page tables or interrupts don't work.
CPU exceptions, with KPTI turned on, are treated as interrupts
and not traps so that we have IRQs locked on exception entry.
Add some additional macros for defining IDT entries.
Add special handling of locore text/rodata sections when
creating user mode page tables on x86-64.
Restore qemu_x86_64 to use KPTI, and remove restrictions on
enabling user mode on x86-64.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
- In early boot, enable the syscall instruction and set up
necessary MSRs
- Add a hook to update page tables on context switch
- Properly initialize thread based on whether it will
start in user or supervisor mode
- Add landing function for system calls to execute the
desired handler
- Implement arch_user_string_nlen()
- Implement logic for dropping a thread down to user mode
- Reserve per-CPU storage space for user and privilege
elevation stack pointers, necessary for handling syscalls
when no free registers are available
- Proper handling of gs register considerations when
transitioning privilege levels
Kernel page table isolation (KPTI) is not yet implemented.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
Promote the private z_arch_* namespace, which specifies
the interface between the core kernel and the
architecture code, to a new top-level namespace named
arch_*.
This allows our documentation generation to create
online documentation for this set of interfaces,
and this set of interfaces is worth treating in a
more formal way anyway.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This is part of the core kernel -> architecture interface
and should have a leading prefix z_arch_.
Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
k_thread.thread_state (or rather, _thread_base.thread_state) should be
private to the kernel/scheduler, so flags previously stored there are
moved to _thread_arch where the belong.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
This is a naive implementation which does "eager" context switching
for floating-point context, which, of course, introduces performance
concerns. Other approaches have security concerns, SMP implications,
and impact the x86 arch and Zephyr project as a whole. Discussion is
needed, so punting with the straightforward solution for now.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
First "complete" version of Intel64 support for x86. Compilation of
apps for supported boards (read: up_squared) with CONFIG_X86_LONGMODE=y
is now working. Booting, device drivers, interrupts, scheduling, etc.
appear to be functioning properly. Beware that this is ALHPA quality,
not ready for production use, but the port has advanced far enough that
it's time to start working through the test suite and samples, fleshing
out any missing features, and squashing bugs.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>
This patch adds basic build infrastructure, definitions, a linker
script, etc. to use the Zephyr and 0.10.1 SDK to build a 64-bit
ELF binary suitable for use with GRUB to minimally bootstrap an
Apollo Lake (e.g., UpSquared) board. The resulting binary can hardly
be called a Zephyr kernel as it is lacking most of the glue logic,
but it is a starting point to flesh those out in the x86 tree.
The "kernel" builds with a few harmless warnings, both with GCC from
the Zephyr SDK and with ICC (which is currently being worked on in
a separate branch). These warnings are either related to pointer size
differences (since this is an LP64 build) and/or dummy functions
that will be replaced with working versions shortly.
Signed-off-by: Charles E. Youse <charles.youse@intel.com>