Integration of TinyCrypt v2: ECC, CMAC, AES-CCM with test cases for CMAC and CCM.
Change-Id: I26a5c3027af0d00f55021c1ac063100606084314 Signed-off-by: Constanza Heath <constanza.m.heath@intel.com>
This commit is contained in:
parent
23be7fd1cd
commit
eaed145cb6
51 changed files with 3527 additions and 29 deletions
|
@ -50,6 +50,24 @@ config TINYCRYPT_SHA256_HMAC_PRNG
|
|||
This option enables support for psudeo-random number
|
||||
generator.
|
||||
|
||||
config TINYCRYPT_ECC_DH
|
||||
bool
|
||||
prompt "ECC_DH anonymous key agreement protocol"
|
||||
depends on TINYCRYPT
|
||||
default n
|
||||
help
|
||||
This option enables support for the Elliptic curve
|
||||
Diffie-Helman anonymous key agreement protocol.
|
||||
|
||||
config TINYCRYPT_ECC_DSA
|
||||
bool
|
||||
prompt "ECC_DSA digital signature algorithm"
|
||||
depends on TINYCRYPT
|
||||
default n
|
||||
help
|
||||
This option enables support for the Elliptic Curbe Digital
|
||||
Signature Algorithm (ECDSA).
|
||||
|
||||
config TINYCRYPT_AES
|
||||
bool
|
||||
prompt "AES-128 decrypt/encrypt"
|
||||
|
@ -72,4 +90,20 @@ config TINYCRYPT_AES_CTR
|
|||
depends on TINYCRYPT_AES
|
||||
default n
|
||||
help
|
||||
This option enables support for AES-128 counter mode.
|
||||
This option enables support for AES-128 counter mode.
|
||||
|
||||
config TINYCRYPT_AES_CCM
|
||||
bool
|
||||
prompt "AES-128 CCM mode"
|
||||
depends on TINYCRYPT_AES
|
||||
default n
|
||||
help
|
||||
This option enables support for AES-128 CCM mode.
|
||||
|
||||
config TINYCRYPT_AES_CMAC
|
||||
bool
|
||||
prompt "AES-128 CMAC mode"
|
||||
depends on TINYCRYPT_AES
|
||||
default n
|
||||
help
|
||||
This option enables support for AES-128 CMAC mode.
|
|
@ -1,9 +1,13 @@
|
|||
ccflags-y +=-I$(srctree)/lib/crypto/tinycrypt/include
|
||||
lib-$(CONFIG_TINYCRYPT) := source/utils.o
|
||||
lib-$(CONFIG_TINYCRYPT_ECC_DH) += source/ecc_dh.o
|
||||
lib-$(CONFIG_TINYCRYPT_ECC_DSA) += source/ecc_dsa.o
|
||||
lib-$(CONFIG_TINYCRYPT_AES) += source/aes_decrypt.o
|
||||
lib-$(CONFIG_TINYCRYPT_AES) += source/aes_encrypt.o
|
||||
lib-$(CONFIG_TINYCRYPT_AES_CBC) += source/cbc_mode.o
|
||||
lib-$(CONFIG_TINYCRYPT_AES_CTR) += source/ctr_mode.o
|
||||
lib-$(CONFIG_TINYCRYPT_AES_CCM) += source/ccm_mode.o
|
||||
lib-$(CONFIG_TINYCRYPT_AES_CMAC) += source/cmac_mode.o
|
||||
lib-$(CONFIG_TINYCRYPT_SHA256) += source/sha256.o
|
||||
lib-$(CONFIG_TINYCRYPT_SHA256) += source/utils.o
|
||||
lib-$(CONFIG_TINYCRYPT_SHA256_HMAC) += source/hmac.o
|
||||
|
|
|
@ -49,7 +49,7 @@
|
|||
#ifndef __TC_AES_H__
|
||||
#define __TC_AES_H__
|
||||
|
||||
#include<stdint.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
@ -74,7 +74,7 @@ typedef struct tc_aes_key_sched_struct *TCAesKeySched_t;
|
|||
* @note This implementation skips the additional steps required for keys
|
||||
* larger than 128 bits, and must not be used for AES-192 or
|
||||
* AES-256 key schedule -- see FIPS 197 for details
|
||||
* @param s IN/OUT -- inited struct tc_aes_key_sched_struct
|
||||
* @param s IN/OUT -- initialized struct tc_aes_key_sched_struct
|
||||
* @param k IN -- points to the AES key
|
||||
*/
|
||||
int32_t tc_aes128_set_encrypt_key(TCAesKeySched_t s, const uint8_t *k);
|
||||
|
@ -106,7 +106,7 @@ int32_t tc_aes_encrypt(uint8_t *out,
|
|||
* @warning This routine skips the additional steps required for keys larger
|
||||
* than 128, and must not be used for AES-192 or AES-256 key
|
||||
* schedule -- see FIPS 197 for details
|
||||
* @param s IN/OUT -- inited struct tc_aes_key_sched_struct
|
||||
* @param s IN/OUT -- initialized struct tc_aes_key_sched_struct
|
||||
* @param k IN -- points to the AES key
|
||||
*/
|
||||
int32_t tc_aes128_set_decrypt_key(TCAesKeySched_t s, const uint8_t *k);
|
||||
|
|
|
@ -114,7 +114,7 @@ int32_t tc_cbc_mode_encrypt(uint8_t *out, uint32_t outlen, const uint8_t *in,
|
|||
/**
|
||||
* @brief CBC decryption procedure
|
||||
* CBC decrypts inlen bytes of the in buffer into the out buffer
|
||||
* using the encryption key schedule provided by a
|
||||
* using the provided encryption key schedule
|
||||
* @return returns TC_SUCCESS (1)
|
||||
* returns TC_FAIL (0) if:
|
||||
* out == NULL or
|
||||
|
|
201
lib/crypto/tinycrypt/include/tinycrypt/ccm_mode.h
Normal file
201
lib/crypto/tinycrypt/include/tinycrypt/ccm_mode.h
Normal file
|
@ -0,0 +1,201 @@
|
|||
/* ccm_mode.h - TinyCrypt interface to a CCM mode implementation */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* @brief Interface to a CCM mode implementation.
|
||||
*
|
||||
* Overview: CCM (for "Counter with CBC-MAC") mode is a NIST approved mode of
|
||||
* operation defined in SP 800-38C.
|
||||
*
|
||||
* TinyCrypt CCM implementation accepts:
|
||||
*
|
||||
* 1) Both non-empty payload and associated data (it encrypts and
|
||||
* authenticates the payload and also authenticates the associated
|
||||
* data);
|
||||
* 2) Non-empty payload and empty associated data (it encrypts and
|
||||
* authenticates the payload);
|
||||
* 3) Non-empty associated data and empty payload (it degenerates to
|
||||
* an authentication mode on the associated data).
|
||||
*
|
||||
* TinyCrypt CCM implementation accepts associated data of any length
|
||||
* between 0 and (2^16 - 2^8) bytes.
|
||||
*
|
||||
* Security: The mac length parameter is an important parameter to estimate the
|
||||
* security against collision attacks (that aim at finding different
|
||||
* messages that produce the same authentication tag). TinyCrypt CCM
|
||||
* implementation accepts any even integer between 4 and 16, as
|
||||
* suggested in SP 800-38C.
|
||||
*
|
||||
* RFC-3610, which also specifies CCM, presents a few relevant
|
||||
* security suggestions, such as: it is recommended for most
|
||||
* applications to use a mac length greater than 8. Besides, the
|
||||
* usage of the same nonce for two different messages which are
|
||||
* encrypted with the same key destroys the security of CCM mode.
|
||||
*
|
||||
* Requires: AES-128
|
||||
*
|
||||
* Usage: 1) call tc_ccm_config to configure.
|
||||
*
|
||||
* 2) call tc_ccm_mode_encrypt to encrypt data and generate tag.
|
||||
*
|
||||
* 3) call tc_ccm_mode_decrypt to decrypt data and verify tag.
|
||||
*/
|
||||
|
||||
#ifndef __TC_CCM_MODE_H__
|
||||
#define __TC_CCM_MODE_H__
|
||||
|
||||
#include <tinycrypt/aes.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* max additional authenticated size in bytes: 2^16 - 2^8 = 65280 */
|
||||
#define TC_CCM_AAD_MAX_BYTES 0xff00
|
||||
|
||||
/* max message size in bytes: 2^(8L) = 2^16 = 65536 */
|
||||
#define TC_CCM_PAYLOAD_MAX_BYTES 0x10000
|
||||
|
||||
/* struct tc_ccm_mode_struct represents the state of a CCM computation */
|
||||
typedef struct tc_ccm_mode_struct {
|
||||
TCAesKeySched_t sched; /* AES key schedule */
|
||||
uint8_t *nonce; /* nonce required by CCM */
|
||||
uint32_t mlen; /* mac length in bytes (parameter t in SP-800 38C) */
|
||||
} *TCCcmMode_t;
|
||||
|
||||
/**
|
||||
* @brief CCM configuration procedure
|
||||
* @return returns TC_SUCCESS (1)
|
||||
* returns TC_FAIL (0) if:
|
||||
* c == NULL or
|
||||
* sched == NULL or
|
||||
* nonce == NULL or
|
||||
* mlen != {4, 6, 8, 10, 12, 16}
|
||||
* @param c -- CCM state
|
||||
* @param sched IN -- AES key schedule
|
||||
* @param nonce IN - nonce
|
||||
* @param nlen -- nonce length in bytes
|
||||
* @param mlen -- mac length in bytes (parameter t in SP-800 38C)
|
||||
*/
|
||||
int32_t tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce,
|
||||
uint32_t nlen, uint32_t mlen);
|
||||
|
||||
/**
|
||||
* @brief CCM tag generation and encryption procedure
|
||||
* @return returns TC_SUCCESS (1)
|
||||
* returns TC_FAIL (0) if:
|
||||
* out == NULL or
|
||||
* c == NULL or
|
||||
* ((plen > 0) and (payload == NULL)) or
|
||||
* ((alen > 0) and (associated_data == NULL)) or
|
||||
* (alen >= TC_CCM_AAD_MAX_BYTES) or
|
||||
* (plen >= TC_CCM_PAYLOAD_MAX_BYTES)
|
||||
*
|
||||
* @param out OUT -- encrypted data
|
||||
* @param associated_data IN -- associated data
|
||||
* @param alen IN -- associated data length in bytes
|
||||
* @param payload IN -- payload
|
||||
* @param plen IN -- payload length in bytes
|
||||
* @param c IN -- CCM state
|
||||
*
|
||||
* @note: The sequence b for encryption is formatted as follows:
|
||||
* b = [FLAGS | nonce | counter ], where:
|
||||
* FLAGS is 1 byte long
|
||||
* nonce is 13 bytes long
|
||||
* counter is 2 bytes long
|
||||
* The byte FLAGS is composed by the following 8 bits:
|
||||
* 0-2 bits: used to represent the value of q-1
|
||||
* 3-7 btis: always 0's
|
||||
*
|
||||
* @note: The sequence b for authentication is formatted as follows:
|
||||
* b = [FLAGS | nonce | length(mac length)], where:
|
||||
* FLAGS is 1 byte long
|
||||
* nonce is 13 bytes long
|
||||
* length(mac length) is 2 bytes long
|
||||
* The byte FLAGS is composed by the following 8 bits:
|
||||
* 0-2 bits: used to represent the value of q-1
|
||||
* 3-5 bits: mac length (encoded as: (mlen-2)/2)
|
||||
* 6: Adata (0 if alen == 0, and 1 otherwise)
|
||||
* 7: always 0
|
||||
*/
|
||||
int32_t tc_ccm_generation_encryption(uint8_t *out, const uint8_t *associated_data,
|
||||
uint32_t alen, const uint8_t *payload,
|
||||
uint32_t plen, TCCcmMode_t c);
|
||||
|
||||
/**
|
||||
* @brief CCM decryption and tag verification procedure
|
||||
* @return returns TC_SUCCESS (1)
|
||||
* returns TC_FAIL (0) if:
|
||||
* out == NULL or
|
||||
* c == NULL or
|
||||
* ((plen > 0) and (payload == NULL)) or
|
||||
* ((alen > 0) and (associated_data == NULL)) or
|
||||
* (alen >= TC_CCM_AAD_MAX_BYTES) or
|
||||
* (plen >= TC_CCM_PAYLOAD_MAX_BYTES)
|
||||
*
|
||||
* @param out OUT -- decrypted data
|
||||
* @param associated_data IN -- associated data
|
||||
* @param alen IN -- associated data length in bytes
|
||||
* @param payload IN -- payload
|
||||
* @param plen IN -- payload length in bytes
|
||||
* @param c IN -- CCM state
|
||||
*
|
||||
* @note: The sequence b for encryption is formatted as follows:
|
||||
* b = [FLAGS | nonce | counter ], where:
|
||||
* FLAGS is 1 byte long
|
||||
* nonce is 13 bytes long
|
||||
* counter is 2 bytes long
|
||||
* The byte FLAGS is composed by the following 8 bits:
|
||||
* 0-2 bits: used to represent the value of q-1
|
||||
* 3-7 btis: always 0's
|
||||
*
|
||||
* @note: The sequence b for authentication is formatted as follows:
|
||||
* b = [FLAGS | nonce | length(mac length)], where:
|
||||
* FLAGS is 1 byte long
|
||||
* nonce is 13 bytes long
|
||||
* length(mac length) is 2 bytes long
|
||||
* The byte FLAGS is composed by the following 8 bits:
|
||||
* 0-2 bits: used to represent the value of q-1
|
||||
* 3-5 bits: mac length (encoded as: (mlen-2)/2)
|
||||
* 6: Adata (0 if alen == 0, and 1 otherwise)
|
||||
* 7: always 0
|
||||
*/
|
||||
int32_t tc_ccm_decryption_verification(uint8_t *out, const uint8_t *associated_data,
|
||||
uint32_t alen, const uint8_t *payload, uint32_t plen,
|
||||
TCCcmMode_t c);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
194
lib/crypto/tinycrypt/include/tinycrypt/cmac_mode.h
Normal file
194
lib/crypto/tinycrypt/include/tinycrypt/cmac_mode.h
Normal file
|
@ -0,0 +1,194 @@
|
|||
/* cmac_mode.h -- interface to a CMAC implementation */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* @brief Interface to a CMAC implementation.
|
||||
*
|
||||
* Overview: CMAC is defined NIST in SP 800-38B, and is the standard algorithm
|
||||
* for computing a MAC using a block cipher. It can compute the MAC
|
||||
* for a byte string of any length. It is distinguished from CBC-MAC
|
||||
* in the processing of the final message block; CMAC uses a
|
||||
* different technique to compute the final message block is full
|
||||
* size or only partial, while CBC-MAC uses the same technique for
|
||||
* both. This difference permits CMAC to be applied to variable
|
||||
* length messages, while all messages authenticated by CBC-MAC must
|
||||
* be the same length.
|
||||
*
|
||||
* Security: AES128-CMAC mode of operation offers 64 bits of security against
|
||||
* collision attacks. Note however that an external attacker cannot
|
||||
* generate the tags him/herself without knowing the MAC key. In this
|
||||
* sense, to attack the collision property of AES128-CMAC, an
|
||||
* external attacker would need the cooperation of the legal user to
|
||||
* produce an exponentially high number of tags (e.g. 2^64) to
|
||||
* finally be able to look for collisions and benefit from them. As
|
||||
* an extra precaution, the current implementation allows to at most
|
||||
* 2^48 calls to the tc_cmac_update function before re-calling
|
||||
* tc_cmac_setup (allowing a new key to be set), as suggested in
|
||||
* Appendix B of SP 800-38B.
|
||||
*
|
||||
* Requires: AES-128
|
||||
*
|
||||
* Usage: This implementation provides a "scatter-gather" interface, so that
|
||||
* the CMAC value can be computed incrementally over a message
|
||||
* scattered in different segments throughout memory. Experience shows
|
||||
* this style of interface tends to minimize the burden of programming
|
||||
* correctly. Like all symmetric key operations, it is session
|
||||
* oriented.
|
||||
*
|
||||
* To begin a CMAC session, use tc_cmac_setup to initialize a struct
|
||||
* tc_cmac_struct with encryption key and buffer. Our implementation
|
||||
* always assume that the AES key to be the same size as the block
|
||||
* cipher block size. Once setup, this data structure can be used for
|
||||
* many CMAC computations.
|
||||
*
|
||||
* Once the state has been setup with a key, computing the CMAC of
|
||||
* some data requires three steps:
|
||||
*
|
||||
* (1) first use tc_cmac_init to initialize a new CMAC computation.
|
||||
* (2) next mix all of the data into the CMAC computation state using
|
||||
* tc_cmac_update. If all of the data resides in a single data
|
||||
* segment then only one tc_cmac_update call is needed; if data
|
||||
* is scattered throughout memory in n data segments, then n calls
|
||||
* will be needed. CMAC IS ORDER SENSITIVE, to be able to detect
|
||||
* attacks that swap bytes, so the order in which data is mixed
|
||||
* into the state is critical!
|
||||
* (3) Once all of the data for a message has been mixed, use
|
||||
* tc_cmac_final to compute the CMAC tag value.
|
||||
*
|
||||
* Steps (1)-(3) can be repeated as many times as you want to CMAC
|
||||
* multiple messages. A practical limit is 2^48 1K messages before you
|
||||
* have to change the key.
|
||||
*
|
||||
* Once you are done computing CMAC with a key, it is a good idea to
|
||||
* destroy the state so an attacker cannot recover the key; use
|
||||
* tc_cmac_erase to accomplish this.
|
||||
*/
|
||||
|
||||
#ifndef __TC_CMAC_MODE_H__
|
||||
#define __TC_CMAC_MODE_H__
|
||||
|
||||
#include <tinycrypt/aes.h>
|
||||
|
||||
#include <stddef.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* padding for last message block */
|
||||
#define TC_CMAC_PADDING 0x80
|
||||
|
||||
/* struct tc_cmac_struct represents the state of a CMAC computation */
|
||||
typedef struct tc_cmac_struct {
|
||||
/* initialization vector */
|
||||
uint8_t iv[TC_AES_BLOCK_SIZE];
|
||||
/* used if message length is a multiple of block_size bytes */
|
||||
uint8_t K1[TC_AES_BLOCK_SIZE];
|
||||
/* used if message length isn't a multiple block_size bytes */
|
||||
uint8_t K2[TC_AES_BLOCK_SIZE];
|
||||
/* where to put bytes that didn't fill a block */
|
||||
uint8_t leftover[TC_AES_BLOCK_SIZE];
|
||||
/* identifies the encryption key */
|
||||
uint32_t keyid;
|
||||
/* next available leftover location */
|
||||
uint32_t leftover_offset;
|
||||
/* AES key schedule */
|
||||
TCAesKeySched_t sched;
|
||||
/* calls to tc_cmac_update left before re-key */
|
||||
uint64_t countdown;
|
||||
} *TCCmacState_t;
|
||||
|
||||
/**
|
||||
* @brief Configures the CMAC state to use the given AES key
|
||||
* @return returns TC_SUCCESS (1) after having configured the CMAC state
|
||||
* returns TC_FAIL (0) if:
|
||||
* s == NULL or
|
||||
* key == NULL
|
||||
*
|
||||
* @param s IN/OUT -- the state to set up
|
||||
* @param key IN -- the key to use
|
||||
* @param sched IN -- AES key schedule
|
||||
*/
|
||||
int32_t tc_cmac_setup(TCCmacState_t s, const uint8_t *key,
|
||||
TCAesKeySched_t sched);
|
||||
|
||||
/**
|
||||
* @brief Erases the CMAC state
|
||||
* @return returns TC_SUCCESS (1) after having configured the CMAC state
|
||||
* returns TC_FAIL (0) if:
|
||||
* s == NULL
|
||||
*
|
||||
* @param s IN/OUT -- the state to erase
|
||||
*/
|
||||
int32_t tc_cmac_erase(TCCmacState_t s);
|
||||
|
||||
/**
|
||||
* @brief Initializes a new CMAC computation
|
||||
* @return returns TC_SUCCESS (1) after having initialized the CMAC state
|
||||
* returns TC_FAIL (0) if:
|
||||
* s == NULL
|
||||
*
|
||||
* @param s IN/OUT -- the state to initialize
|
||||
*/
|
||||
int32_t tc_cmac_init(TCCmacState_t s);
|
||||
|
||||
/**
|
||||
* @brief Incrementally computes CMAC over the next data segment
|
||||
* @return returns TC_SUCCESS (1) after successfully updating the CMAC state
|
||||
* returns TC_FAIL (0) if:
|
||||
* s == NULL or
|
||||
* if data == NULL when dlen > 0
|
||||
*
|
||||
* @param s IN/OUT -- the CMAC state
|
||||
* @param data IN -- the next data segment to MAC
|
||||
* @param dlen IN -- the length of data in bytes
|
||||
*/
|
||||
int32_t tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t dlen);
|
||||
|
||||
/**
|
||||
* @brief Generates the tag from the CMAC state
|
||||
* @return returns TC_SUCCESS (1) after successfully generating the tag
|
||||
* returns TC_FAIL (0) if:
|
||||
* tag == NULL or
|
||||
* s == NULL
|
||||
*
|
||||
* @param tag OUT -- the CMAC tag
|
||||
* @param s IN -- CMAC state
|
||||
*/
|
||||
int32_t tc_cmac_final(uint8_t *tag, TCCmacState_t s);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
63
lib/crypto/tinycrypt/include/tinycrypt/constants.h
Normal file
63
lib/crypto/tinycrypt/include/tinycrypt/constants.h
Normal file
|
@ -0,0 +1,63 @@
|
|||
/* constants.h - TinyCrypt interface to constants */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* @brief -- Interface to constants.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef __TC_CONSTANTS_H__
|
||||
#define __TC_CONSTANTS_H__
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifndef NULL
|
||||
#define NULL ((void *)0)
|
||||
#endif
|
||||
|
||||
#ifndef bool
|
||||
enum {false, true} bool;
|
||||
#endif
|
||||
|
||||
#define TC_CRYPTO_SUCCESS 1
|
||||
#define TC_CRYPTO_FAIL 0
|
||||
|
||||
#define TC_ZERO_BYTE 0x00
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -68,6 +68,7 @@
|
|||
#define __TC_CTR_MODE_H__
|
||||
|
||||
#include <tinycrypt/aes.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
|
320
lib/crypto/tinycrypt/include/tinycrypt/ecc.h
Normal file
320
lib/crypto/tinycrypt/include/tinycrypt/ecc.h
Normal file
|
@ -0,0 +1,320 @@
|
|||
/* ecc.h - TinyCrypt interface to ECC auxiliary functions */
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Copyright (c) 2013, Kenneth MacKay
|
||||
* All rights reserved.
|
||||
* https://github.com/kmackay/micro-ecc
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* =============================================================================
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* @brief -- Interface to ECC auxiliary functions.
|
||||
*
|
||||
* Overview: This software is an implementation of auxiliary functions
|
||||
* necessary to elliptic curve cryptography. This implementation uses
|
||||
* curve NIST p-256.
|
||||
*
|
||||
* Security: The curve NIST p-256 provides approximately 128 bits of security.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef __TC_ECC_H__
|
||||
#define __TC_ECC_H__
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Number of words of 32 bits to represent an element of the the curve p-256: */
|
||||
#define NUM_ECC_DIGITS 8
|
||||
/* Number of bytes to represent an element of the the curve p-256: */
|
||||
#define NUM_ECC_BYTES (4*NUM_ECC_DIGITS)
|
||||
|
||||
/* struct to represent a point of the curve (uses X and Y coordinates): */
|
||||
typedef struct EccPoint {
|
||||
uint32_t x[NUM_ECC_DIGITS];
|
||||
uint32_t y[NUM_ECC_DIGITS];
|
||||
} EccPoint;
|
||||
|
||||
/* struct to represent a point of the curve in Jacobian coordinates
|
||||
* (uses X, Y and Z coordinates):
|
||||
*/
|
||||
typedef struct EccPointJacobi {
|
||||
uint32_t X[NUM_ECC_DIGITS];
|
||||
uint32_t Y[NUM_ECC_DIGITS];
|
||||
uint32_t Z[NUM_ECC_DIGITS];
|
||||
} EccPointJacobi;
|
||||
|
||||
/*
|
||||
* @brief Check if p_vli is zero.
|
||||
* @return returns non-zero if p_vli == 0, zero otherwise.
|
||||
*
|
||||
* @param p_native OUT -- will be filled in with the native integer value.
|
||||
* @param p_bytes IN -- standard octet representation of the integer to convert.
|
||||
*
|
||||
* @note Side-channel countermeasure: algorithm strengthened against timing
|
||||
* attack.
|
||||
*/
|
||||
uint32_t vli_isZero(uint32_t *p_vli);
|
||||
|
||||
/*
|
||||
* @brief Set the content of p_src in p_dest.
|
||||
*
|
||||
* @param p_dest OUT -- Destination buffer.
|
||||
* @param p_src IN -- Origin buffer.
|
||||
*
|
||||
*/
|
||||
void vli_set(uint32_t *p_dest, uint32_t *p_src);
|
||||
|
||||
/*
|
||||
* @brief Computes the sign of p_left - p_right.
|
||||
* @return returns the sign of p_left - p_right.
|
||||
*
|
||||
* @param p_left IN -- buffer to be compared.
|
||||
* @param p_right IN -- buffer to be compared.
|
||||
* @param word_size IN -- size of the word.
|
||||
*
|
||||
* @note Side-channel countermeasure: algorithm strengthened against timing
|
||||
* attack.
|
||||
*/
|
||||
int32_t vli_cmp(uint32_t *p_left, uint32_t *p_right, int32_t word_size);
|
||||
|
||||
/*
|
||||
* @brief Computes p_result = p_left - p_right, returns borrow.
|
||||
* @return returns the sign of p_left - p_right.
|
||||
*
|
||||
* @param p_result IN -- buffer to be compared.
|
||||
* @param p_left IN -- buffer p_left in (p_left - p_right).
|
||||
* @param p_right IN -- buffer p_right in (p_left - p_right).
|
||||
* @param word_size IN -- size of the word.
|
||||
*
|
||||
* @note Side-channel countermeasure: algorithm strengthened against timing
|
||||
* attack.
|
||||
* @note Can modify in place.
|
||||
*/
|
||||
uint32_t vli_sub(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right,
|
||||
uint32_t word_size);
|
||||
|
||||
/*
|
||||
* @brief Conditional set: sets either 'p_true' or 'p_false' to 'output',
|
||||
* depending on the value of 'cond'.
|
||||
*
|
||||
* @param output OUT -- result buffer after setting either p_true or p_false.
|
||||
* @param p_true IN -- buffer to be used if cond is true.
|
||||
* @param p_false IN -- buffer to be used if cond is false.
|
||||
* @param cond IN -- boolean value that will determine which value will be set
|
||||
* to output.
|
||||
*/
|
||||
void vli_cond_set(uint32_t *output, uint32_t *p_true, uint32_t *p_false,
|
||||
uint32_t cond);
|
||||
|
||||
/*
|
||||
* @brief Computes p_result = (p_left + p_right) % p_mod.
|
||||
*
|
||||
* @param p_result OUT -- result buffer.
|
||||
* @param p_left IN -- buffer p_left in (p_left + p_right) % p_mod.
|
||||
* @param p_right IN -- buffer p_right in (p_left + p_right) % p_mod.
|
||||
* @param p_mod IN -- module.
|
||||
*
|
||||
* @note Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod.
|
||||
* @note Side-channel countermeasure: algorithm strengthened against timing
|
||||
* attack.
|
||||
*/
|
||||
void vli_modAdd(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right,
|
||||
uint32_t *p_mod);
|
||||
|
||||
/*
|
||||
* @brief Computes p_result = (p_left - p_right) % p_mod.
|
||||
*
|
||||
* @param p_result OUT -- result buffer.
|
||||
* @param p_left IN -- buffer p_left in (p_left - p_right) % p_mod.
|
||||
* @param p_right IN -- buffer p_right in (p_left - p_right) % p_mod.
|
||||
* @param p_mod IN -- module.
|
||||
*
|
||||
* @note Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod.
|
||||
* @note Side-channel countermeasure: algorithm strengthened against timing
|
||||
* attack.
|
||||
*/
|
||||
void vli_modSub(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right,
|
||||
uint32_t *p_mod);
|
||||
|
||||
/*
|
||||
* @brief Computes p_result = (p_left * p_right) % curve_p.
|
||||
*
|
||||
* @param p_result OUT -- result buffer.
|
||||
* @param p_left IN -- buffer p_left in (p_left * p_right) % curve_p.
|
||||
* @param p_right IN -- buffer p_right in (p_left * p_right) % curve_p.
|
||||
*/
|
||||
void vli_modMult_fast(uint32_t *p_result, uint32_t *p_left,
|
||||
uint32_t *p_right);
|
||||
|
||||
/*
|
||||
* @brief Computes p_result = p_left^2 % curve_p.
|
||||
*
|
||||
* @param p_result OUT -- result buffer.
|
||||
* @param p_left IN -- buffer p_left in (p_left^2 % curve_p).
|
||||
*/
|
||||
void vli_modSquare_fast(uint32_t *p_result, uint32_t *p_left);
|
||||
|
||||
/*
|
||||
* @brief Computes p_result = (p_left * p_right) % p_mod.
|
||||
*
|
||||
* @param p_result OUT -- result buffer.
|
||||
* @param p_left IN -- buffer p_left in (p_left * p_right) % p_mod.
|
||||
* @param p_right IN -- buffer p_right in (p_left * p_right) % p_mod.
|
||||
* @param p_mod IN -- module.
|
||||
* @param p_barrett IN -- used for Barrett reduction.
|
||||
*/
|
||||
void vli_modMult(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right,
|
||||
uint32_t *p_mod, uint32_t *p_barrett);
|
||||
|
||||
/*
|
||||
* @brief Computes modular inversion: (1/p_intput) % p_mod.
|
||||
*
|
||||
* @param p_result OUT -- result buffer.
|
||||
* @param p_input IN -- buffer p_input in (1/p_intput) % p_mod.
|
||||
* @param p_mod IN -- module.
|
||||
* @param p_barrett IN -- used for Barrett reduction.
|
||||
*/
|
||||
void vli_modInv(uint32_t *p_result, uint32_t *p_input,
|
||||
uint32_t *p_mod, uint32_t *p_barrett);
|
||||
|
||||
/*
|
||||
* @brief Check if a point is zero.
|
||||
* @return Returns 1 if p_point is the point at infinity, 0 otherwise.
|
||||
*
|
||||
* @param p_point IN -- point to be checked.
|
||||
*/
|
||||
uint32_t EccPoint_isZero(EccPoint *p_point);
|
||||
|
||||
/*
|
||||
* @brief Check if point in Jacobi coordinates is zero.
|
||||
* @return Returns 1 if p_point_jacobi is the point at infinity, 0 otherwise.
|
||||
*
|
||||
* @param p_point IN -- point to be checked.
|
||||
*/
|
||||
uint32_t EccPointJacobi_isZero(EccPointJacobi *p_point_jacobi);
|
||||
|
||||
/*
|
||||
* @brief Conversion from Jacobi coordinates to Affine coordinates.
|
||||
*
|
||||
* @param p_point OUT -- point in Affine coordinates.
|
||||
* @param p_point_jacobi OUT -- point in Jacobi coordinates.
|
||||
*/
|
||||
void EccPoint_toAffine(EccPoint *p_point, EccPointJacobi *p_point_jacobi);
|
||||
|
||||
/*
|
||||
* @brief Elliptic curve point addition in Jacobi coordinates: P1 = P1 + P2.
|
||||
*
|
||||
* @param P1 IN/OUT -- P1 in P1 = P1 + P2.
|
||||
* @param P2 IN -- P2 in P1 = P1 + P2.
|
||||
*/
|
||||
void EccPoint_add(EccPointJacobi *P1, EccPointJacobi *P2);
|
||||
|
||||
/*
|
||||
* @brief Elliptic curve scalar multiplication with result in Jacobi coordinates
|
||||
*
|
||||
* @param p_result OUT -- Product of p_point by p_scalar.
|
||||
* @param p_point IN -- Elliptic curve point
|
||||
* @param p_scalar IN -- Scalar integer
|
||||
*/
|
||||
void EccPoint_mult(EccPointJacobi *p_result, EccPoint *p_point,
|
||||
uint32_t *p_scalar);
|
||||
|
||||
/*
|
||||
* @brief Convert an integer in standard octet representation to native format.
|
||||
* @return returns TC_SUCCESS (1)
|
||||
* returns TC_FAIL (0) if:
|
||||
* out == NULL or
|
||||
* c == NULL or
|
||||
* ((plen > 0) and (payload == NULL)) or
|
||||
* ((alen > 0) and (associated_data == NULL)) or
|
||||
* (alen >= TC_CCM_AAD_MAX_BYTES) or
|
||||
* (plen >= TC_CCM_PAYLOAD_MAX_BYTES)
|
||||
*
|
||||
* @param p_native OUT -- will be filled in with the native integer value.
|
||||
* @param p_bytes IN -- standard octet representation of the integer to convert.
|
||||
*
|
||||
*/
|
||||
void ecc_bytes2native(uint32_t p_native[NUM_ECC_DIGITS],
|
||||
uint8_t p_bytes[NUM_ECC_DIGITS*4]);
|
||||
|
||||
|
||||
/*
|
||||
* @brief Convert an integer in native format to standard octet representation.
|
||||
* @return returns TC_SUCCESS (1)
|
||||
* returns TC_FAIL (0) if:
|
||||
* out == NULL or
|
||||
* c == NULL or
|
||||
* ((plen > 0) and (payload == NULL)) or
|
||||
* ((alen > 0) and (associated_data == NULL)) or
|
||||
* (alen >= TC_CCM_AAD_MAX_BYTES) or
|
||||
* (plen >= TC_CCM_PAYLOAD_MAX_BYTES)
|
||||
*
|
||||
* @param p_bytes OUT -- will be filled in with the standard octet
|
||||
* representation of the integer.
|
||||
* @param p_native IN -- native integer value to convert.
|
||||
*
|
||||
*/
|
||||
void ecc_native2bytes(uint8_t p_bytes[NUM_ECC_DIGITS*4],
|
||||
uint32_t p_native[NUM_ECC_DIGITS]);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
144
lib/crypto/tinycrypt/include/tinycrypt/ecc_dh.h
Normal file
144
lib/crypto/tinycrypt/include/tinycrypt/ecc_dh.h
Normal file
|
@ -0,0 +1,144 @@
|
|||
/* ecc_dh.h - TinyCrypt interface to EC-DH implementation */
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Copyright (c) 2013, Kenneth MacKay
|
||||
* All rights reserved.
|
||||
* https://github.com/kmackay/micro-ecc
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* =============================================================================
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* @brief -- Interface to EC-DH implementation.
|
||||
*
|
||||
* Overview: This software is an implementation of EC-DH. This implementation
|
||||
* uses curve NIST p-256.
|
||||
*
|
||||
* Security: The curve NIST p-256 provides approximately 128 bits of security.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef __TC_ECC_DH_H__
|
||||
#define __TC_ECC_DH_H__
|
||||
|
||||
#include <tinycrypt/ecc.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Create a public/private key pair.
|
||||
* @return returns TC_SUCCESS (1) if the key pair was generated successfully
|
||||
* returns TC_FAIL (0) if:
|
||||
* the private key is 0
|
||||
|
||||
* @param p_publicKey OUT -- the point representing the public key.
|
||||
* @param p_privateKey OUT -- the private key.
|
||||
* @param p_random IN -- The random number to use to generate the key pair.
|
||||
*
|
||||
* @note You must use a new non-predictable random number to generate each
|
||||
* new key pair.
|
||||
* @note p_random must have NUM_ECC_DIGITS*2 bits of entropy to eliminate
|
||||
* bias in keys.
|
||||
*
|
||||
* @note side-channel countermeasure: algorithm strengthened against timing
|
||||
* attack.
|
||||
*/
|
||||
int32_t ecc_make_key(EccPoint *p_publicKey,
|
||||
uint32_t p_privateKey[NUM_ECC_DIGITS],
|
||||
uint32_t p_random[NUM_ECC_DIGITS * 2]);
|
||||
|
||||
/**
|
||||
* @brief Determine whether or not a given point is on the chosen elliptic curve
|
||||
* (ie, is a valid public key).
|
||||
* @return returns 0 if the given point is valid
|
||||
* returns -1 if: the point is zero
|
||||
* returns -2 if: curve_p - p_publicKey->x != 1 or
|
||||
* curve_p - p_publicKey->y != 1
|
||||
* returns -3 if: y^2 != x^3 + ax + b
|
||||
|
||||
* @param p_publicKey IN -- The point to be checked.
|
||||
*/
|
||||
int32_t ecc_valid_public_key(EccPoint *p_publicKey);
|
||||
|
||||
/**
|
||||
* @brief Compute a shared secret given your secret key and someone else's
|
||||
* public key.
|
||||
* @return returns TC_SUCCESS (1) if the shared secret was computed successfully
|
||||
* returns TC_FAIL (0) otherwise
|
||||
*
|
||||
* @param p_secret OUT -- The shared secret value.
|
||||
* @param p_publicKey IN -- The public key of the remote party.
|
||||
* @param p_privateKey IN -- Your private key.
|
||||
*
|
||||
* @note Optionally, you can provide a random multiplier for resistance to DPA
|
||||
* attacks. The random multiplier should probably be different for each
|
||||
* invocation of ecdh_shared_secret().
|
||||
*
|
||||
* @note It is recommended that you hash the result of ecdh_shared_secret before
|
||||
* using it for symmetric encryption or HMAC. If you do not hash the shared
|
||||
* secret, you must call ecc_valid_public_key() to verify that the remote side's
|
||||
* public key is valid. If this is not done, an attacker could create a public
|
||||
* key that would cause your use of the shared secret to leak information about
|
||||
* the private key.
|
||||
*/
|
||||
int32_t ecdh_shared_secret(uint32_t p_secret[NUM_ECC_DIGITS], EccPoint *p_publicKey,
|
||||
uint32_t p_privateKey[NUM_ECC_DIGITS]);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
135
lib/crypto/tinycrypt/include/tinycrypt/ecc_dsa.h
Normal file
135
lib/crypto/tinycrypt/include/tinycrypt/ecc_dsa.h
Normal file
|
@ -0,0 +1,135 @@
|
|||
/* ecc_dh.h - TinyCrypt interface to EC-DSA implementation */
|
||||
|
||||
/*
|
||||
* =============================================================================
|
||||
* Copyright (c) 2013, Kenneth MacKay
|
||||
* All rights reserved.
|
||||
* https://github.com/kmackay/micro-ecc
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* =============================================================================
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/**
|
||||
* @file
|
||||
* @brief -- Interface to EC-DSA implementation.
|
||||
*
|
||||
* Overview: This software is an implementation of EC-DSA. This implementation
|
||||
* uses curve NIST p-256.
|
||||
*
|
||||
* Security: The curve NIST p-256 provides approximately 128 bits of security.
|
||||
*
|
||||
* Usage: - To sign: Compute a hash of the data you wish to sign (SHA-2 is
|
||||
* recommended) and pass it in to ecdsa_sign function along with your
|
||||
* private key and a random number. You must use a new non-predictable
|
||||
* random number to generate each new signature.
|
||||
* - To verify a signature: Compute the hash of the signed data using
|
||||
* the same hash as the signer and pass it to this function along with
|
||||
* the signer's public key and the signature values (r and s).
|
||||
*/
|
||||
|
||||
#ifndef __TC_ECC_DSA_H__
|
||||
#define __TC_ECC_DSA_H__
|
||||
|
||||
#include <tinycrypt/ecc.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Generate an ECDSA signature for a given hash value.
|
||||
* @return returns TC_SUCCESS (1) if the the signature generated successfully
|
||||
* returns TC_FAIL (0) if:
|
||||
* r == 0 or
|
||||
* p_random == 0
|
||||
*
|
||||
* @param r OUT -- to be filled with the signature values.
|
||||
* @param s OUT -- to be filled with the signature values.
|
||||
* @param p_privateKey IN -- Your private key.
|
||||
* @param p_random IN -- The random number to use in generating ephemeral DSA
|
||||
* keys.
|
||||
* @param p_hash IN -- The message hash to sign.
|
||||
*
|
||||
* @note p_random must have NUM_ECC_DIGITS*2 bits of entropy to eliminate
|
||||
* bias in keys.
|
||||
*
|
||||
* @note side-channel countermeasure: algorithm strengthened against timing
|
||||
* attack.
|
||||
*/
|
||||
int32_t ecdsa_sign(uint32_t r[NUM_ECC_DIGITS], uint32_t s[NUM_ECC_DIGITS],
|
||||
uint32_t p_privateKey[NUM_ECC_DIGITS], uint32_t p_random[NUM_ECC_DIGITS * 2],
|
||||
uint32_t p_hash[NUM_ECC_DIGITS]);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Verify an ECDSA signature.
|
||||
* @return returns TC_SUCCESS (1) if the the signature generated successfully
|
||||
* returns TC_FAIL (0) if:
|
||||
* r == 0 or
|
||||
* p_random == 0
|
||||
*
|
||||
* @param p_publicKey IN -- The signer's public key.
|
||||
* @param p_hash IN -- The hash of the signed data.
|
||||
* @param r IN -- The signature values.
|
||||
* @param s IN -- The signature values.
|
||||
*
|
||||
* @note side-channel countermeasure: algorithm strengthened against timing
|
||||
* attack.
|
||||
*/
|
||||
int32_t ecdsa_verify(EccPoint *p_publicKey, uint32_t p_hash[NUM_ECC_DIGITS],
|
||||
uint32_t r[NUM_ECC_DIGITS], uint32_t s[NUM_ECC_DIGITS]);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
|
@ -129,7 +129,7 @@ int32_t tc_hmac_update(TCHmacState_t ctx,
|
|||
* state has been initialized by tc_hmac_init
|
||||
* @param tag IN/OUT -- buffer to receive computed HMAC tag
|
||||
* @param taglen IN -- size of tag in bytes
|
||||
* @param ctx IN -- the HMAC state for computing tag
|
||||
* @param ctx IN/OUT -- the HMAC state for computing tag
|
||||
*/
|
||||
int32_t tc_hmac_final(uint8_t *tag, uint32_t taglen, TCHmacState_t ctx);
|
||||
|
||||
|
|
|
@ -75,6 +75,8 @@
|
|||
extern "C" {
|
||||
#endif
|
||||
|
||||
#define TC_HMAC_PRNG_RESEED_REQ -1
|
||||
|
||||
struct tc_hmac_prng_struct {
|
||||
/* the HMAC instance for this PRNG */
|
||||
struct tc_hmac_state_struct h;
|
||||
|
@ -142,7 +144,7 @@ int32_t tc_hmac_prng_reseed(TCHmacPrng_t prng, const uint8_t *seed,
|
|||
* @brief HMAC-PRNG generate procedure
|
||||
* Generates outlen pseudo-random bytes into out buffer, updates prng
|
||||
* @return returns TC_SUCCESS (1)
|
||||
* returns TC_RESEED_REQ (-1) if a reseed is needed
|
||||
* returns TC_HMAC_PRNG_RESEED_REQ (-1) if a reseed is needed
|
||||
* returns TC_FAIL (0) if:
|
||||
* out == NULL,
|
||||
* prng == NULL,
|
||||
|
|
|
@ -119,7 +119,7 @@ int32_t tc_sha256_update(TCSha256State_t s,
|
|||
* @warning The state buffer 'leftover' is left in memory after processing
|
||||
* If your application intends to have sensitive data in this
|
||||
* buffer, remind to erase it after the data has been processed
|
||||
* @param digest unigned eight bit integer
|
||||
* @param digest unsigned eight bit integer
|
||||
* @param Sha256 state struct
|
||||
*/
|
||||
int32_t tc_sha256_final(uint8_t *digest, TCSha256State_t s);
|
||||
|
|
|
@ -40,6 +40,7 @@
|
|||
#define __TC_UTILS_H__
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
|
@ -51,24 +52,46 @@ extern "C" {
|
|||
|
||||
/**
|
||||
* @brief Copy the the buffer 'from' to the buffer 'to'.
|
||||
* @return returns TC_SUCCESS (1)
|
||||
* returns TC_FAIL (0) if:
|
||||
* from_len > to_len.
|
||||
*
|
||||
* @return returns TC_FAIL (0) if:
|
||||
* from_len > to_len.
|
||||
* @param to OUT -- destination buffer
|
||||
* @param to_len IN -- length of destination buffer
|
||||
* @param from IN -- origin buffer
|
||||
* @param from_len IN -- length of origin buffer
|
||||
*/
|
||||
uint32_t _copy(uint8_t *to, uint32_t to_len,
|
||||
const uint8_t *from, uint32_t from_len);
|
||||
|
||||
/**
|
||||
* @brief Set the value 'val' into the buffer 'to', 'len' times.
|
||||
*
|
||||
* @param to OUT -- destination buffer
|
||||
* @param val IN -- value to be set in 'to'
|
||||
* @param len IN -- number of times the value will be copied
|
||||
*/
|
||||
void _set(uint8_t *to, uint8_t val, uint32_t len);
|
||||
void _set(void *to, uint8_t val, uint32_t len);
|
||||
|
||||
/**
|
||||
* @brief This is an AES specific doubling function, which utilizes the
|
||||
* finite field used by AES.
|
||||
/*
|
||||
* @brief AES specific doubling function, which utilizes
|
||||
* the finite field used by AES.
|
||||
* @return Returns a^2
|
||||
*
|
||||
* @param a IN/OUT -- value to be doubled
|
||||
*/
|
||||
uint8_t _double_byte(uint8_t a);
|
||||
|
||||
/*
|
||||
* @brief Constant-time algorithm to compare if two sequences of bytes are equal
|
||||
* @return Returns 0 if equal, and non-zero otherwise
|
||||
*
|
||||
* @param a IN -- sequence of bytes a
|
||||
* @param b IN -- sequence of bytes b
|
||||
* @param size IN -- size of sequences a and b
|
||||
*/
|
||||
int32_t _compare(const uint8_t *a, const uint8_t *b, size_t size);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
*/
|
||||
|
||||
#include <tinycrypt/aes.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
|
||||
#define ZERO_BYTE 0x00
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
|
||||
#include <tinycrypt/aes.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
|
||||
static const uint8_t sbox[256] = {
|
||||
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b,
|
||||
|
@ -182,7 +183,9 @@ int32_t tc_aes_encrypt(uint8_t *out, const uint8_t *in, const TCAesKeySched_t s)
|
|||
add_round_key(state, s->words + Nb*(i+1));
|
||||
|
||||
(void)_copy(out, sizeof(state), state, sizeof(state));
|
||||
_set(state, 0x00, sizeof(state));
|
||||
|
||||
/* zeroing out the state buffer */
|
||||
_set(state, TC_ZERO_BYTE, sizeof(state));
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
*/
|
||||
|
||||
#include <tinycrypt/cbc_mode.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
|
||||
int32_t tc_cbc_mode_encrypt(uint8_t *out, uint32_t outlen, const uint8_t *in,
|
||||
|
|
262
lib/crypto/tinycrypt/source/ccm_mode.c
Normal file
262
lib/crypto/tinycrypt/source/ccm_mode.c
Normal file
|
@ -0,0 +1,262 @@
|
|||
/* ccm_mode.c - TinyCrypt implementation of CCM mode */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <tinycrypt/ccm_mode.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
int32_t tc_ccm_config(TCCcmMode_t c, TCAesKeySched_t sched, uint8_t *nonce,
|
||||
uint32_t nlen, uint32_t mlen)
|
||||
{
|
||||
|
||||
/* input sanity check: */
|
||||
if (c == (TCCcmMode_t) 0 ||
|
||||
sched == (TCAesKeySched_t) 0 ||
|
||||
nonce == (uint8_t *) 0) {
|
||||
return TC_FAIL;
|
||||
} else if (nlen != 13) {
|
||||
return TC_FAIL; /* The allowed nonce size is: 13. See documentation.*/
|
||||
} else if ((mlen < 4) || (mlen > 16) || (mlen & 1)) {
|
||||
return TC_FAIL; /* The allowed mac sizes are: 4, 6, 8, 10, 12, 14, 16.*/
|
||||
}
|
||||
|
||||
c->mlen = mlen;
|
||||
c->sched = sched;
|
||||
c->nonce = nonce;
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* Variation of CBC-MAC mode used in CCM.
|
||||
*/
|
||||
static void ccm_cbc_mac(uint8_t *T, const uint8_t *data, uint32_t dlen,
|
||||
uint32_t flag, TCAesKeySched_t sched)
|
||||
{
|
||||
|
||||
uint32_t i;
|
||||
|
||||
if (flag > 0) {
|
||||
T[0] ^= (uint8_t)(dlen >> 8);
|
||||
T[1] ^= (uint8_t)(dlen);
|
||||
dlen += 2; i = 2;
|
||||
} else {
|
||||
i = 0;
|
||||
}
|
||||
|
||||
while (i < dlen) {
|
||||
T[i++ % (Nb * Nk)] ^= *data++;
|
||||
if (((i % (Nb * Nk)) == 0) || dlen == i) {
|
||||
(void) tc_aes_encrypt(T, T, sched);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Variation of CTR mode used in CCM.
|
||||
* The CTR mode used by CCM is slightly different than the conventional CTR
|
||||
* mode (the counter is increased before encryption, instead of after
|
||||
* encryption). Besides, it is assumed that the counter is stored in the last
|
||||
* 2 bytes of the nonce.
|
||||
*/
|
||||
static int32_t ccm_ctr_mode(uint8_t *out, uint32_t outlen, const uint8_t *in,
|
||||
uint32_t inlen, uint8_t *ctr, const TCAesKeySched_t sched)
|
||||
{
|
||||
|
||||
uint8_t buffer[TC_AES_BLOCK_SIZE];
|
||||
uint8_t nonce[TC_AES_BLOCK_SIZE];
|
||||
uint16_t block_num;
|
||||
uint32_t i;
|
||||
|
||||
/* input sanity check: */
|
||||
if (out == (uint8_t *) 0 ||
|
||||
in == (uint8_t *) 0 ||
|
||||
ctr == (uint8_t *) 0 ||
|
||||
sched == (TCAesKeySched_t) 0 ||
|
||||
inlen == 0 ||
|
||||
outlen == 0 ||
|
||||
outlen != inlen) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
/* copy the counter to the nonce */
|
||||
(void) _copy(nonce, sizeof(nonce), ctr, sizeof(nonce));
|
||||
|
||||
/* select the last 2 bytes of the nonce to be incremented */
|
||||
block_num = (uint16_t) ((nonce[14] << 8)|(nonce[15]));
|
||||
for (i = 0; i < inlen; ++i) {
|
||||
if ((i % (TC_AES_BLOCK_SIZE)) == 0) {
|
||||
block_num++;
|
||||
nonce[14] = (uint8_t)(block_num >> 8);
|
||||
nonce[15] = (uint8_t)(block_num);
|
||||
if (!tc_aes_encrypt(buffer, nonce, sched)) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
}
|
||||
/* update the output */
|
||||
*out++ = buffer[i % (TC_AES_BLOCK_SIZE)] ^ *in++;
|
||||
}
|
||||
|
||||
/* update the counter */
|
||||
ctr[14] = nonce[14]; ctr[15] = nonce[15];
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t tc_ccm_generation_encryption(uint8_t *out, const uint8_t *associated_data,
|
||||
uint32_t alen, const uint8_t *payload,
|
||||
uint32_t plen, TCCcmMode_t c)
|
||||
{
|
||||
/* input sanity check: */
|
||||
if ((out == (uint8_t *) 0) ||
|
||||
(c == (TCCcmMode_t) 0) ||
|
||||
((plen > 0) && (payload == (uint8_t *) 0)) ||
|
||||
((alen > 0) && (associated_data == (uint8_t *) 0)) ||
|
||||
(alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */
|
||||
(plen >= TC_CCM_PAYLOAD_MAX_BYTES)) { /* payload size unsupported */
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
uint8_t b[Nb * Nk];
|
||||
uint8_t tag[Nb * Nk];
|
||||
uint32_t i;
|
||||
|
||||
/* GENERATING THE AUTHENTICATION TAG: */
|
||||
|
||||
/* formatting the sequence b for authentication: */
|
||||
b[0] = ((alen > 0) ? 0x40:0) | (((c->mlen - 2) / 2 << 3)) | (1);
|
||||
for (i = 1; i <= 13; ++i) {
|
||||
b[i] = c->nonce[i - 1];
|
||||
}
|
||||
b[14] = (uint8_t)(plen >> 8);
|
||||
b[15] = (uint8_t)(plen);
|
||||
|
||||
/* computing the authentication tag using cbc-mac: */
|
||||
(void) tc_aes_encrypt(tag, b, c->sched);
|
||||
if (alen > 0) {
|
||||
ccm_cbc_mac(tag, associated_data, alen, 1, c->sched);
|
||||
}
|
||||
if (plen > 0) {
|
||||
ccm_cbc_mac(tag, payload, plen, 0, c->sched);
|
||||
}
|
||||
|
||||
/* ENCRYPTION: */
|
||||
|
||||
/* formatting the sequence b for encryption: */
|
||||
b[0] = 1; /* q - 1 = 2 - 1 = 1 */
|
||||
b[14] = b[15] = TC_ZERO_BYTE;
|
||||
|
||||
/* encrypting payload using ctr mode: */
|
||||
ccm_ctr_mode(out, plen, payload, plen, b, c->sched);
|
||||
|
||||
b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter for ctr_mode (0):*/
|
||||
|
||||
/* encrypting b and adding the tag to the output: */
|
||||
(void) tc_aes_encrypt(b, b, c->sched);
|
||||
out += plen;
|
||||
for (i = 0; i < c->mlen; ++i) {
|
||||
*out++ = tag[i] ^ b[i];
|
||||
}
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t tc_ccm_decryption_verification(uint8_t *out, const uint8_t *associated_data,
|
||||
uint32_t alen, const uint8_t *payload,
|
||||
uint32_t plen, TCCcmMode_t c)
|
||||
{
|
||||
|
||||
/* input sanity check: */
|
||||
if ((plen <= alen) ||
|
||||
(out == (uint8_t *) 0) ||
|
||||
(c == (TCCcmMode_t) 0) ||
|
||||
((plen > 0) && (payload == (uint8_t *) 0)) ||
|
||||
((alen > 0) && (associated_data == (uint8_t *) 0)) ||
|
||||
(alen >= TC_CCM_AAD_MAX_BYTES) || /* associated data size unsupported */
|
||||
(plen >= TC_CCM_PAYLOAD_MAX_BYTES)) { /* payload size unsupported */
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
uint8_t b[Nb * Nk];
|
||||
uint8_t tag[Nb * Nk];
|
||||
uint32_t i;
|
||||
|
||||
/* DECRYPTION: */
|
||||
|
||||
/* formatting the sequence b for decryption: */
|
||||
b[0] = 1; /* q - 1 = 2 - 1 = 1 */
|
||||
for (i = 1; i < 14; ++i) {
|
||||
b[i] = c->nonce[i - 1];
|
||||
}
|
||||
b[14] = b[15] = TC_ZERO_BYTE; /* initial counter value is 0 */
|
||||
|
||||
/* decrypting payload using ctr mode: */
|
||||
ccm_ctr_mode(out, plen - c->mlen, payload, plen - c->mlen, b, c->sched);
|
||||
|
||||
b[14] = b[15] = TC_ZERO_BYTE; /* restoring initial counter value (0) */
|
||||
|
||||
/* encrypting b and restoring the tag from input: */
|
||||
(void) tc_aes_encrypt(b, b, c->sched);
|
||||
for (i = 0; i < c->mlen; ++i) {
|
||||
tag[i] = *(payload + plen - c->mlen + i) ^ b[i];
|
||||
}
|
||||
|
||||
/* VERIFYING THE AUTHENTICATION TAG: */
|
||||
|
||||
/* formatting the sequence b for authentication: */
|
||||
b[0] = ((alen > 0) ? 0x40:0)|(((c->mlen - 2) / 2 << 3)) | (1);
|
||||
for (i = 1; i < 14; ++i) {
|
||||
b[i] = c->nonce[i - 1];
|
||||
}
|
||||
b[14] = (uint8_t)((plen - c->mlen) >> 8);
|
||||
b[15] = (uint8_t)(plen - c->mlen);
|
||||
|
||||
/* computing the authentication tag using cbc-mac: */
|
||||
(void) tc_aes_encrypt(b, b, c->sched);
|
||||
if (alen > 0) {
|
||||
ccm_cbc_mac(b, associated_data, alen, 1, c->sched);
|
||||
}
|
||||
if (plen > 0) {
|
||||
ccm_cbc_mac(b, out, plen - c->mlen, 0, c->sched);
|
||||
}
|
||||
|
||||
/* comparing the received tag and the computed one: */
|
||||
if (_compare(b, tag, c->mlen) != 0) {
|
||||
/* erase the decrypted buffer in case of mac validation failure: */
|
||||
_set(out, 0, sizeof(*out));
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
254
lib/crypto/tinycrypt/source/cmac_mode.c
Normal file
254
lib/crypto/tinycrypt/source/cmac_mode.c
Normal file
|
@ -0,0 +1,254 @@
|
|||
/* cmac_mode.c - TinyCrypt CMAC mode implementation */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <tinycrypt/aes.h>
|
||||
#include <tinycrypt/cmac_mode.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
|
||||
/* max number of calls until change the key (2^48).*/
|
||||
static uint64_t MAX_CALLS = ((uint64_t)1 << 48);
|
||||
|
||||
/*
|
||||
* gf_wrap -- In our implementation, GF(2^128) is represented as a 16 byte
|
||||
* array with byte 0 the most significant and byte 15 the least significant.
|
||||
* High bit carry reduction is based on the primitive polynomial
|
||||
*
|
||||
* X^128 + X^7 + X^2 + X + 1,
|
||||
*
|
||||
* which leads to the reduction formula X^128 = X^7 + X^2 + X + 1. Indeed,
|
||||
* since 0 = (X^128 + X^7 + X^2 + 1) mod (X^128 + X^7 + X^2 + X + 1) and since
|
||||
* addition of polynomials with coefficients in Z/Z(2) is just XOR, we can
|
||||
* add X^128 to both sides to get
|
||||
*
|
||||
* X^128 = (X^7 + X^2 + X + 1) mod (X^128 + X^7 + X^2 + X + 1)
|
||||
*
|
||||
* and the coefficients of the polynomial on the right hand side form the
|
||||
* string 1000 0111 = 0x87, which is the value of gf_wrap.
|
||||
*
|
||||
* This gets used in the following way. Doubling in GF(2^128) is just a left
|
||||
* shift by 1 bit, except when the most significant bit is 1. In the latter
|
||||
* case, the relation X^128 = X^7 + X^2 + X + 1 says that the high order bit
|
||||
* that overflows beyond 128 bits can be replaced by addition of
|
||||
* X^7 + X^2 + X + 1 <--> 0x87 to the low order 128 bits. Since addition
|
||||
* in GF(2^128) is represented by XOR, we therefore only have to XOR 0x87
|
||||
* into the low order byte after a left shift when the starting high order
|
||||
* bit is 1.
|
||||
*/
|
||||
const unsigned char gf_wrap = 0x87;
|
||||
|
||||
/*
|
||||
* assumes: out != NULL and points to a GF(2^n) value to receive the
|
||||
* doubled value;
|
||||
* in != NULL and points to a 16 byte GF(2^n) value
|
||||
* to double;
|
||||
* the in and out buffers do not overlap.
|
||||
* effects: doubles the GF(2^n) value pointed to by "in" and places
|
||||
* the result in the GF(2^n) value pointed to by "out."
|
||||
*/
|
||||
void gf_double(uint8_t *out, uint8_t *in)
|
||||
{
|
||||
|
||||
/* start with low order byte */
|
||||
uint8_t *x = in + (TC_AES_BLOCK_SIZE - 1);
|
||||
|
||||
/* if msb == 1, we need to add the gf_wrap value, otherwise add 0 */
|
||||
uint8_t carry = (in[0] >> 7) ? gf_wrap : 0;
|
||||
|
||||
out += (TC_AES_BLOCK_SIZE - 1);
|
||||
for (;;) {
|
||||
*out-- = (*x << 1) ^ carry;
|
||||
if (x == in) {
|
||||
break;
|
||||
}
|
||||
carry = *x-- >> 7;
|
||||
}
|
||||
}
|
||||
|
||||
int32_t tc_cmac_setup(TCCmacState_t s, const uint8_t *key, TCAesKeySched_t sched)
|
||||
{
|
||||
|
||||
/* input sanity check: */
|
||||
if (s == (TCCmacState_t) 0 ||
|
||||
key == (const uint8_t *) 0) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
/* put s into a known state */
|
||||
_set(s, 0, sizeof(*s));
|
||||
s->sched = sched;
|
||||
|
||||
/* configure the encryption key used by the underlying block cipher */
|
||||
tc_aes128_set_encrypt_key(s->sched, key);
|
||||
|
||||
/* compute s->K1 and s->K2 from s->iv using s->keyid */
|
||||
_set(s->iv, 0, TC_AES_BLOCK_SIZE);
|
||||
tc_aes_encrypt(s->iv, s->iv, s->sched);
|
||||
gf_double (s->K1, s->iv);
|
||||
gf_double (s->K2, s->K1);
|
||||
|
||||
/* reset s->iv to 0 in case someone wants to compute now */
|
||||
tc_cmac_init(s);
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t tc_cmac_erase(TCCmacState_t s)
|
||||
{
|
||||
if (s == (TCCmacState_t) 0) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
/* destroy the current state */
|
||||
_set(s, 0, sizeof(*s));
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t tc_cmac_init(TCCmacState_t s)
|
||||
{
|
||||
/* input sanity check: */
|
||||
if (s == (TCCmacState_t) 0) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
/* CMAC starts with an all zero initialization vector */
|
||||
_set(s->iv, 0, TC_AES_BLOCK_SIZE);
|
||||
|
||||
/* and the leftover buffer is empty */
|
||||
_set(s->leftover, 0, TC_AES_BLOCK_SIZE);
|
||||
s->leftover_offset = 0;
|
||||
|
||||
/* Set countdown to max number of calls allowed before re-keying: */
|
||||
s->countdown = MAX_CALLS;
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t tc_cmac_update(TCCmacState_t s, const uint8_t *data, size_t data_length)
|
||||
{
|
||||
uint32_t i;
|
||||
|
||||
/* input sanity check: */
|
||||
if (s == (TCCmacState_t) 0) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
if (data_length == 0) {
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
if (data == (const uint8_t *) 0) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
if (s->countdown == 0) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
s->countdown--;
|
||||
|
||||
if (s->leftover_offset > 0) {
|
||||
/* last data added to s didn't end on a TC_AES_BLOCK_SIZE byte boundary */
|
||||
size_t remaining_space = TC_AES_BLOCK_SIZE - s->leftover_offset;
|
||||
|
||||
if (data_length < remaining_space) {
|
||||
/* still not enough data to encrypt this time either */
|
||||
_copy(&s->leftover[s->leftover_offset], data_length, data, data_length);
|
||||
s->leftover_offset += data_length;
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
/* leftover block is now full; encrypt it first */
|
||||
_copy(&s->leftover[s->leftover_offset],
|
||||
remaining_space,
|
||||
data,
|
||||
remaining_space);
|
||||
data_length -= remaining_space;
|
||||
data += remaining_space;
|
||||
s->leftover_offset = 0;
|
||||
|
||||
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
|
||||
s->iv[i] ^= s->leftover[i];
|
||||
}
|
||||
tc_aes_encrypt(s->iv, s->iv, s->sched);
|
||||
}
|
||||
|
||||
/* CBC encrypt each (except the last) of the data blocks */
|
||||
while (data_length > TC_AES_BLOCK_SIZE) {
|
||||
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
|
||||
s->iv[i] ^= data[i];
|
||||
}
|
||||
tc_aes_encrypt(s->iv, s->iv, s->sched);
|
||||
data += TC_AES_BLOCK_SIZE;
|
||||
data_length -= TC_AES_BLOCK_SIZE;
|
||||
}
|
||||
|
||||
if (data_length > 0) {
|
||||
/* save leftover data for next time */
|
||||
_copy(s->leftover, data_length, data, data_length);
|
||||
s->leftover_offset = data_length;
|
||||
}
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t tc_cmac_final(uint8_t *tag, TCCmacState_t s)
|
||||
{
|
||||
uint8_t *k;
|
||||
uint32_t i;
|
||||
|
||||
/* input sanity check: */
|
||||
if (tag == (uint8_t *) 0 ||
|
||||
s == (TCCmacState_t) 0) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
if (s->leftover_offset == TC_AES_BLOCK_SIZE) {
|
||||
/* the last message block is a full-sized block */
|
||||
k = (uint8_t *) s->K1;
|
||||
} else {
|
||||
/* the final message block is not a full-sized block */
|
||||
size_t remaining = TC_AES_BLOCK_SIZE - s->leftover_offset;
|
||||
|
||||
_set(&s->leftover[s->leftover_offset], 0, remaining);
|
||||
s->leftover[s->leftover_offset] = TC_CMAC_PADDING;
|
||||
k = (uint8_t *) s->K2;
|
||||
}
|
||||
for (i = 0; i < TC_AES_BLOCK_SIZE; ++i) {
|
||||
s->iv[i] ^= s->leftover[i] ^ k[i];
|
||||
}
|
||||
|
||||
tc_aes_encrypt(tag, s->iv, s->sched);
|
||||
|
||||
/* erasing state: */
|
||||
tc_cmac_erase(s);
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
|
@ -30,6 +30,7 @@
|
|||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/ctr_mode.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
|
||||
|
|
604
lib/crypto/tinycrypt/source/ecc.c
Normal file
604
lib/crypto/tinycrypt/source/ecc.c
Normal file
|
@ -0,0 +1,604 @@
|
|||
/* ecc.c - TinyCrypt implementation of ECC auxiliary functions */
|
||||
|
||||
/*
|
||||
*
|
||||
* Copyright (c) 2013, Kenneth MacKay
|
||||
* All rights reserved.
|
||||
* https://github.com/kmackay/micro-ecc
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without modification,
|
||||
* are permitted provided that the following conditions are met:
|
||||
* * Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
|
||||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
|
||||
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <tinycrypt/ecc.h>
|
||||
|
||||
/* ------ Curve NIST P-256 constants: ------ */
|
||||
|
||||
#define Curve_P {0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, \
|
||||
0x00000000, 0x00000000, 0x00000001, 0xFFFFFFFF}
|
||||
|
||||
#define Curve_B {0x27D2604B, 0x3BCE3C3E, 0xCC53B0F6, 0x651D06B0, \
|
||||
0x769886BC, 0xB3EBBD55, 0xAA3A93E7, 0x5AC635D8}
|
||||
|
||||
#define Curve_N {0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD, \
|
||||
0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF}
|
||||
|
||||
#define Curve_G {{0xD898C296, 0xF4A13945, 0x2DEB33A0, 0x77037D81, \
|
||||
0x63A440F2, 0xF8BCE6E5, 0xE12C4247, 0x6B17D1F2}, \
|
||||
{0x37BF51F5, 0xCBB64068, 0x6B315ECE, 0x2BCE3357, \
|
||||
0x7C0F9E16, 0x8EE7EB4A, 0xFE1A7F9B, 0x4FE342E2} }
|
||||
|
||||
#define Curve_P_Barrett {0x00000003, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFE, \
|
||||
0xFFFFFFFE, 0xFFFFFFFE, 0xFFFFFFFF, 0x00000000, 0x00000001}
|
||||
|
||||
#define Curve_N_Barrett {0xEEDF9BFE, 0x012FFD85, 0xDF1A6C21, 0x43190552, \
|
||||
0xFFFFFFFF, 0xFFFFFFFE, 0xFFFFFFFF, 0x00000000, 0x00000001}
|
||||
|
||||
uint32_t curve_p[NUM_ECC_DIGITS] = Curve_P;
|
||||
uint32_t curve_b[NUM_ECC_DIGITS] = Curve_B;
|
||||
EccPoint curve_G = Curve_G;
|
||||
uint32_t curve_n[NUM_ECC_DIGITS] = Curve_N;
|
||||
uint32_t curve_pb[NUM_ECC_DIGITS + 1] = Curve_P_Barrett;
|
||||
uint32_t curve_nb[NUM_ECC_DIGITS + 1] = Curve_N_Barrett;
|
||||
|
||||
/* ------ Static functions: ------ */
|
||||
|
||||
/* Zeroing out p_vli. */
|
||||
static void vli_clear(uint32_t *p_vli)
|
||||
{
|
||||
uint32_t i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
p_vli[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns nonzero if bit p_bit of p_vli is set. */
|
||||
static uint32_t vli_testBit(uint32_t *p_vli, uint32_t p_bit)
|
||||
{
|
||||
return (p_vli[p_bit / 32] & (1 << (p_bit % 32)));
|
||||
}
|
||||
|
||||
uint32_t vli_isZero(uint32_t *p_vli)
|
||||
{
|
||||
uint32_t acc = 0;
|
||||
|
||||
for (uint32_t i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
acc |= p_vli[i];
|
||||
}
|
||||
|
||||
return (!acc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the right-most nonzero 32-bit "digits" in p_vli.
|
||||
*
|
||||
* Side-channel countermeasure: algorithm strengthened against timing attack.
|
||||
*/
|
||||
static uint32_t vli_numDigits(uint32_t *p_vli)
|
||||
{
|
||||
int32_t i;
|
||||
uint32_t digits = 0;
|
||||
|
||||
for (i = NUM_ECC_DIGITS - 1; i >= 0 ; --i) {
|
||||
digits += p_vli[i] || digits;
|
||||
}
|
||||
|
||||
return digits;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find the left-most non-zero bit in p_vli.
|
||||
*
|
||||
* Side-channel countermeasure: algorithm strengthened against timing attack.
|
||||
*/
|
||||
static uint32_t vli_numBits(uint32_t *p_vli)
|
||||
{
|
||||
uint32_t l_digit;
|
||||
uint32_t i, acc = 32;
|
||||
uint32_t l_numDigits = vli_numDigits(p_vli);
|
||||
|
||||
l_digit = p_vli[l_numDigits - 1];
|
||||
|
||||
for (i = 0; i < 32; ++i) {
|
||||
acc -= !l_digit;
|
||||
l_digit >>= 1;
|
||||
}
|
||||
|
||||
return ((l_numDigits - 1) * 32 + acc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Computes p_result = p_left + p_right, returns carry.
|
||||
*
|
||||
* Side-channel countermeasure: algorithm strengthened against timing attack.
|
||||
*/
|
||||
static uint32_t vli_add(uint32_t *p_result, uint32_t *p_left,
|
||||
uint32_t *p_right)
|
||||
{
|
||||
|
||||
uint32_t l_carry = 0;
|
||||
|
||||
for (uint32_t i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
uint32_t l_sum = p_left[i] + p_right[i] + l_carry;
|
||||
|
||||
l_carry = (l_sum < p_left[i]) | ((l_sum == p_left[i]) && l_carry);
|
||||
p_result[i] = l_sum;
|
||||
}
|
||||
|
||||
return l_carry;
|
||||
}
|
||||
|
||||
|
||||
/* Computes p_result = p_left * p_right. */
|
||||
static void vli_mult(uint32_t *p_result, uint32_t *p_left,
|
||||
uint32_t *p_right, uint32_t word_size)
|
||||
{
|
||||
|
||||
uint64_t r01 = 0;
|
||||
uint32_t r2 = 0;
|
||||
|
||||
/* Compute each digit of p_result in sequence, maintaining the carries. */
|
||||
for (uint32_t k = 0; k < word_size*2 - 1; ++k) {
|
||||
|
||||
uint32_t l_min = (k < word_size ? 0 : (k + 1) - word_size);
|
||||
|
||||
for (uint32_t i = l_min; i <= k && i < word_size; ++i) {
|
||||
|
||||
uint64_t l_product = (uint64_t)p_left[i] * p_right[k - i];
|
||||
|
||||
r01 += l_product;
|
||||
r2 += (r01 < l_product);
|
||||
}
|
||||
p_result[k] = (uint32_t)r01;
|
||||
r01 = (r01 >> 32) | (((uint64_t)r2) << 32);
|
||||
r2 = 0;
|
||||
}
|
||||
|
||||
p_result[word_size * 2 - 1] = (uint32_t)r01;
|
||||
}
|
||||
|
||||
/* Computes p_result = p_left^2. */
|
||||
static void vli_square(uint32_t *p_result, uint32_t *p_left)
|
||||
{
|
||||
|
||||
uint64_t r01 = 0;
|
||||
uint32_t r2 = 0;
|
||||
uint32_t i, k;
|
||||
|
||||
for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; ++k) {
|
||||
|
||||
uint32_t l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
|
||||
|
||||
for (i = l_min; i <= k && i <= k - i; ++i) {
|
||||
|
||||
uint64_t l_product = (uint64_t)p_left[i] * p_left[k - i];
|
||||
|
||||
if (i < k - i) {
|
||||
|
||||
r2 += l_product >> 63;
|
||||
l_product *= 2;
|
||||
}
|
||||
r01 += l_product;
|
||||
r2 += (r01 < l_product);
|
||||
}
|
||||
p_result[k] = (uint32_t)r01;
|
||||
r01 = (r01 >> 32) | (((uint64_t)r2) << 32);
|
||||
r2 = 0;
|
||||
}
|
||||
|
||||
p_result[NUM_ECC_DIGITS * 2 - 1] = (uint32_t)r01;
|
||||
}
|
||||
|
||||
/* Computes p_result = p_product % curve_p using Barrett reduction. */
|
||||
static void vli_mmod_barrett(uint32_t *p_result, uint32_t *p_product,
|
||||
uint32_t *p_mod, uint32_t *p_barrett)
|
||||
{
|
||||
uint32_t i;
|
||||
uint32_t q1[NUM_ECC_DIGITS + 1];
|
||||
|
||||
for (i = NUM_ECC_DIGITS - 1; i < 2 * NUM_ECC_DIGITS; i++) {
|
||||
q1[i - (NUM_ECC_DIGITS - 1)] = p_product[i];
|
||||
}
|
||||
|
||||
uint32_t q2[2*NUM_ECC_DIGITS + 2];
|
||||
|
||||
vli_mult(q2, q1, p_barrett, NUM_ECC_DIGITS + 1);
|
||||
for (i = NUM_ECC_DIGITS + 1; i < 2 * NUM_ECC_DIGITS + 2; i++) {
|
||||
q1[i - (NUM_ECC_DIGITS + 1)] = q2[i];
|
||||
}
|
||||
|
||||
uint32_t prime2[2*NUM_ECC_DIGITS];
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
prime2[i] = p_mod[i];
|
||||
prime2[NUM_ECC_DIGITS + i] = 0;
|
||||
}
|
||||
|
||||
vli_mult(q2, q1, prime2, NUM_ECC_DIGITS + 1);
|
||||
vli_sub(p_product, p_product, q2, 2 * NUM_ECC_DIGITS);
|
||||
|
||||
uint32_t borrow;
|
||||
|
||||
borrow = vli_sub(q1, p_product, prime2, NUM_ECC_DIGITS + 1);
|
||||
vli_cond_set(p_product, p_product, q1, borrow);
|
||||
p_product[NUM_ECC_DIGITS] = q1[NUM_ECC_DIGITS] * (!borrow);
|
||||
borrow = vli_sub(q1, p_product, prime2, NUM_ECC_DIGITS + 1);
|
||||
vli_cond_set(p_product, p_product, q1, borrow);
|
||||
p_product[NUM_ECC_DIGITS] = q1[NUM_ECC_DIGITS] * (!borrow);
|
||||
borrow = vli_sub(q1, p_product, prime2, NUM_ECC_DIGITS + 1);
|
||||
vli_cond_set(p_product, p_product, q1, borrow);
|
||||
p_product[NUM_ECC_DIGITS] = q1[NUM_ECC_DIGITS] * (!borrow);
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
p_result[i] = p_product[i];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Computes modular exponentiation.
|
||||
*
|
||||
* Side-channel countermeasure: algorithm strengthened against timing attack.
|
||||
*/
|
||||
static void vli_modExp(uint32_t *p_result, uint32_t *p_base,
|
||||
uint32_t *p_exp, uint32_t *p_mod, uint32_t *p_barrett)
|
||||
{
|
||||
|
||||
uint32_t acc[NUM_ECC_DIGITS], tmp[NUM_ECC_DIGITS], product[2 * NUM_ECC_DIGITS];
|
||||
uint32_t j;
|
||||
int32_t i;
|
||||
|
||||
vli_clear(acc);
|
||||
acc[0] = 1;
|
||||
|
||||
for (i = NUM_ECC_DIGITS - 1; i >= 0; i--) {
|
||||
for (j = 1 << 31; j > 0; j = j >> 1) {
|
||||
vli_square(product, acc);
|
||||
vli_mmod_barrett(acc, product, p_mod, p_barrett);
|
||||
vli_mult(product, acc, p_base, NUM_ECC_DIGITS);
|
||||
vli_mmod_barrett(tmp, product, p_mod, p_barrett);
|
||||
vli_cond_set(acc, tmp, acc, j & p_exp[i]);
|
||||
}
|
||||
}
|
||||
|
||||
vli_set(p_result, acc);
|
||||
}
|
||||
|
||||
/* Conversion from Affine coordinates to Jacobi coordinates. */
|
||||
static void EccPoint_fromAffine(EccPointJacobi *p_point_jacobi,
|
||||
EccPoint *p_point) {
|
||||
|
||||
vli_set(p_point_jacobi->X, p_point->x);
|
||||
vli_set(p_point_jacobi->Y, p_point->y);
|
||||
vli_clear(p_point_jacobi->Z);
|
||||
p_point_jacobi->Z[0] = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Elliptic curve point doubling in Jacobi coordinates: P = P + P.
|
||||
*
|
||||
* Requires 4 squares and 4 multiplications.
|
||||
*/
|
||||
static void EccPoint_double(EccPointJacobi *P)
|
||||
{
|
||||
|
||||
uint32_t m[NUM_ECC_DIGITS], s[NUM_ECC_DIGITS], t[NUM_ECC_DIGITS];
|
||||
|
||||
vli_modSquare_fast(t, P->Z);
|
||||
vli_modSub(m, P->X, t, curve_p);
|
||||
vli_modAdd(s, P->X, t, curve_p);
|
||||
vli_modMult_fast(m, m, s);
|
||||
vli_modAdd(s, m, m, curve_p);
|
||||
vli_modAdd(m, s, m, curve_p); /* m = 3X^2 - 3Z^4 */
|
||||
vli_modSquare_fast(t, P->Y);
|
||||
vli_modMult_fast(s, P->X, t);
|
||||
vli_modAdd(s, s, s, curve_p);
|
||||
vli_modAdd(s, s, s, curve_p); /* s = 4XY^2 */
|
||||
vli_modMult_fast(P->Z, P->Y, P->Z);
|
||||
vli_modAdd(P->Z, P->Z, P->Z, curve_p); /* Z' = 2YZ */
|
||||
vli_modSquare_fast(P->X, m);
|
||||
vli_modSub(P->X, P->X, s, curve_p);
|
||||
vli_modSub(P->X, P->X, s, curve_p); /* X' = m^2 - 2s */
|
||||
vli_modSquare_fast(P->Y, t);
|
||||
vli_modAdd(P->Y, P->Y, P->Y, curve_p);
|
||||
vli_modAdd(P->Y, P->Y, P->Y, curve_p);
|
||||
vli_modAdd(P->Y, P->Y, P->Y, curve_p);
|
||||
vli_modSub(t, s, P->X, curve_p);
|
||||
vli_modMult_fast(t, t, m);
|
||||
vli_modSub(P->Y, t, P->Y, curve_p); /* Y' = m(s - X') - 8Y^4 */
|
||||
|
||||
}
|
||||
|
||||
/* Copy input to target. */
|
||||
static void EccPointJacobi_set(EccPointJacobi *target, EccPointJacobi *input)
|
||||
{
|
||||
vli_set(target->X, input->X);
|
||||
vli_set(target->Y, input->Y);
|
||||
vli_set(target->Z, input->Z);
|
||||
}
|
||||
|
||||
/* ------ Externally visible functions (see header file for comments): ------ */
|
||||
|
||||
void vli_set(uint32_t *p_dest, uint32_t *p_src)
|
||||
{
|
||||
|
||||
uint32_t i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
p_dest[i] = p_src[i];
|
||||
}
|
||||
}
|
||||
|
||||
int32_t vli_cmp(uint32_t *p_left, uint32_t *p_right, int32_t word_size)
|
||||
{
|
||||
|
||||
int32_t i, cmp = 0;
|
||||
|
||||
for (i = word_size-1; i >= 0; --i) {
|
||||
cmp |= ((p_left[i] > p_right[i]) - (p_left[i] < p_right[i])) * (!cmp);
|
||||
}
|
||||
|
||||
return cmp;
|
||||
}
|
||||
|
||||
uint32_t vli_sub(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right,
|
||||
uint32_t word_size)
|
||||
{
|
||||
|
||||
uint32_t l_borrow = 0;
|
||||
|
||||
for (uint32_t i = 0; i < word_size; ++i) {
|
||||
uint32_t l_diff = p_left[i] - p_right[i] - l_borrow;
|
||||
|
||||
l_borrow = (l_diff > p_left[i]) | ((l_diff == p_left[i]) && l_borrow);
|
||||
p_result[i] = l_diff;
|
||||
}
|
||||
|
||||
return l_borrow;
|
||||
}
|
||||
|
||||
void vli_cond_set(uint32_t *output, uint32_t *p_true, uint32_t *p_false,
|
||||
uint32_t cond)
|
||||
{
|
||||
uint32_t i;
|
||||
|
||||
cond = (!cond);
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; i++) {
|
||||
output[i] = (p_true[i]*(!cond)) | (p_false[i]*cond);
|
||||
}
|
||||
}
|
||||
|
||||
void vli_modAdd(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right,
|
||||
uint32_t *p_mod)
|
||||
{
|
||||
uint32_t l_carry = vli_add(p_result, p_left, p_right);
|
||||
uint32_t p_temp[NUM_ECC_DIGITS];
|
||||
|
||||
l_carry = l_carry == vli_sub(p_temp, p_result, p_mod, NUM_ECC_DIGITS);
|
||||
vli_cond_set(p_result, p_temp, p_result, l_carry);
|
||||
}
|
||||
|
||||
void vli_modSub(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right,
|
||||
uint32_t *p_mod)
|
||||
{
|
||||
uint32_t l_borrow = vli_sub(p_result, p_left, p_right, NUM_ECC_DIGITS);
|
||||
uint32_t p_temp[NUM_ECC_DIGITS];
|
||||
|
||||
vli_add(p_temp, p_result, p_mod);
|
||||
vli_cond_set(p_result, p_temp, p_result, l_borrow);
|
||||
}
|
||||
|
||||
void vli_modMult_fast(uint32_t *p_result, uint32_t *p_left,
|
||||
uint32_t *p_right)
|
||||
{
|
||||
uint32_t l_product[2 * NUM_ECC_DIGITS];
|
||||
|
||||
vli_mult(l_product, p_left, p_right, NUM_ECC_DIGITS);
|
||||
vli_mmod_barrett(p_result, l_product, curve_p, curve_pb);
|
||||
}
|
||||
|
||||
void vli_modSquare_fast(uint32_t *p_result, uint32_t *p_left)
|
||||
{
|
||||
uint32_t l_product[2 * NUM_ECC_DIGITS];
|
||||
|
||||
vli_square(l_product, p_left);
|
||||
vli_mmod_barrett(p_result, l_product, curve_p, curve_pb);
|
||||
}
|
||||
|
||||
void vli_modMult(uint32_t *p_result, uint32_t *p_left, uint32_t *p_right,
|
||||
uint32_t *p_mod, uint32_t *p_barrett)
|
||||
{
|
||||
|
||||
uint32_t l_product[2 * NUM_ECC_DIGITS];
|
||||
|
||||
vli_mult(l_product, p_left, p_right, NUM_ECC_DIGITS);
|
||||
vli_mmod_barrett(p_result, l_product, p_mod, p_barrett);
|
||||
}
|
||||
|
||||
void vli_modInv(uint32_t *p_result, uint32_t *p_input, uint32_t *p_mod,
|
||||
uint32_t *p_barrett)
|
||||
{
|
||||
uint32_t p_power[NUM_ECC_DIGITS];
|
||||
|
||||
vli_set(p_power, p_mod);
|
||||
p_power[0] -= 2;
|
||||
vli_modExp(p_result, p_input, p_power, p_mod, p_barrett);
|
||||
}
|
||||
|
||||
uint32_t EccPoint_isZero(EccPoint *p_point)
|
||||
{
|
||||
return (vli_isZero(p_point->x) && vli_isZero(p_point->y));
|
||||
}
|
||||
|
||||
uint32_t EccPointJacobi_isZero(EccPointJacobi *p_point_jacobi)
|
||||
{
|
||||
return vli_isZero(p_point_jacobi->Z);
|
||||
}
|
||||
|
||||
void EccPoint_toAffine(EccPoint *p_point, EccPointJacobi *p_point_jacobi)
|
||||
{
|
||||
|
||||
if (vli_isZero(p_point_jacobi->Z)) {
|
||||
vli_clear(p_point->x);
|
||||
vli_clear(p_point->y);
|
||||
return;
|
||||
}
|
||||
|
||||
uint32_t z[NUM_ECC_DIGITS];
|
||||
|
||||
vli_set(z, p_point_jacobi->Z);
|
||||
vli_modInv(z, z, curve_p, curve_pb);
|
||||
vli_modSquare_fast(p_point->x, z);
|
||||
vli_modMult_fast(p_point->y, p_point->x, z);
|
||||
vli_modMult_fast(p_point->x, p_point->x, p_point_jacobi->X);
|
||||
vli_modMult_fast(p_point->y, p_point->y, p_point_jacobi->Y);
|
||||
}
|
||||
|
||||
void EccPoint_add(EccPointJacobi *P1, EccPointJacobi *P2)
|
||||
{
|
||||
|
||||
uint32_t s1[NUM_ECC_DIGITS], u1[NUM_ECC_DIGITS], t[NUM_ECC_DIGITS];
|
||||
uint32_t h[NUM_ECC_DIGITS], r[NUM_ECC_DIGITS];
|
||||
|
||||
vli_modSquare_fast(r, P1->Z);
|
||||
vli_modSquare_fast(s1, P2->Z);
|
||||
vli_modMult_fast(u1, P1->X, s1); /* u1 = X1 Z2^2 */
|
||||
vli_modMult_fast(h, P2->X, r);
|
||||
vli_modMult_fast(s1, P1->Y, s1);
|
||||
vli_modMult_fast(s1, s1, P2->Z); /* s1 = Y1 Z2^3 */
|
||||
vli_modMult_fast(r, P2->Y, r);
|
||||
vli_modMult_fast(r, r, P1->Z);
|
||||
vli_modSub(h, h, u1, curve_p); /* h = X2 Z1^2 - u1 */
|
||||
vli_modSub(r, r, s1, curve_p); /* r = Y2 Z1^3 - s1 */
|
||||
|
||||
if (vli_isZero(h)) {
|
||||
if (vli_isZero(r)) {
|
||||
/* P1 = P2 */
|
||||
EccPoint_double(P1);
|
||||
return;
|
||||
}
|
||||
/* point at infinity */
|
||||
vli_clear(P1->Z);
|
||||
return;
|
||||
}
|
||||
|
||||
vli_modMult_fast(P1->Z, P1->Z, P2->Z);
|
||||
vli_modMult_fast(P1->Z, P1->Z, h); /* Z3 = h Z1 Z2 */
|
||||
vli_modSquare_fast(t, h);
|
||||
vli_modMult_fast(h, t, h);
|
||||
vli_modMult_fast(u1, u1, t);
|
||||
vli_modSquare_fast(P1->X, r);
|
||||
vli_modSub(P1->X, P1->X, h, curve_p);
|
||||
vli_modSub(P1->X, P1->X, u1, curve_p);
|
||||
vli_modSub(P1->X, P1->X, u1, curve_p); /* X3 = r^2 - h^3 - 2 u1 h^2 */
|
||||
vli_modMult_fast(t, s1, h);
|
||||
vli_modSub(P1->Y, u1, P1->X, curve_p);
|
||||
vli_modMult_fast(P1->Y, P1->Y, r);
|
||||
vli_modSub(P1->Y, P1->Y, t, curve_p); /* Y3 = r(u1 h^2 - X3) - s1 h^3 */
|
||||
}
|
||||
|
||||
/*
|
||||
* Elliptic curve scalar multiplication with result in Jacobi coordinates:
|
||||
*
|
||||
* p_result = p_scalar * p_point.
|
||||
*/
|
||||
void EccPoint_mult(EccPointJacobi *p_result, EccPoint *p_point, uint32_t *p_scalar)
|
||||
{
|
||||
|
||||
int32_t i;
|
||||
uint32_t bit;
|
||||
EccPointJacobi p_point_jacobi, p_tmp;
|
||||
|
||||
EccPoint_fromAffine(p_result, p_point);
|
||||
EccPoint_fromAffine(&p_point_jacobi, p_point);
|
||||
|
||||
for (i = vli_numBits(p_scalar) - 2; i >= 0; i--) {
|
||||
EccPoint_double(p_result);
|
||||
EccPointJacobi_set(&p_tmp, p_result);
|
||||
EccPoint_add(&p_tmp, &p_point_jacobi);
|
||||
bit = vli_testBit(p_scalar, i);
|
||||
vli_cond_set(p_result->X, p_tmp.X, p_result->X, bit);
|
||||
vli_cond_set(p_result->Y, p_tmp.Y, p_result->Y, bit);
|
||||
vli_cond_set(p_result->Z, p_tmp.Z, p_result->Z, bit);
|
||||
}
|
||||
}
|
||||
|
||||
/* -------- Conversions between big endian and little endian: -------- */
|
||||
|
||||
void ecc_bytes2native(uint32_t p_native[NUM_ECC_DIGITS],
|
||||
uint8_t p_bytes[NUM_ECC_DIGITS * 4])
|
||||
{
|
||||
|
||||
uint32_t i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
uint8_t *p_digit = p_bytes + 4 * (NUM_ECC_DIGITS - 1 - i);
|
||||
|
||||
p_native[i] = ((uint32_t)p_digit[0] << 24) |
|
||||
((uint32_t)p_digit[1] << 16) |
|
||||
((uint32_t)p_digit[2] << 8) |
|
||||
(uint32_t)p_digit[3];
|
||||
}
|
||||
}
|
||||
|
||||
void ecc_native2bytes(uint8_t p_bytes[NUM_ECC_DIGITS * 4],
|
||||
uint32_t p_native[NUM_ECC_DIGITS])
|
||||
{
|
||||
|
||||
uint32_t i;
|
||||
|
||||
for (i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
uint8_t *p_digit = p_bytes + 4 * (NUM_ECC_DIGITS - 1 - i);
|
||||
|
||||
p_digit[0] = p_native[i] >> 24;
|
||||
p_digit[1] = p_native[i] >> 16;
|
||||
p_digit[2] = p_native[i] >> 8;
|
||||
p_digit[3] = p_native[i];
|
||||
}
|
||||
}
|
||||
|
123
lib/crypto/tinycrypt/source/ecc_dh.c
Normal file
123
lib/crypto/tinycrypt/source/ecc_dh.c
Normal file
|
@ -0,0 +1,123 @@
|
|||
/* ec_dh.c - TinyCrypt implementation of EC-DH */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/ecc.h>
|
||||
|
||||
extern uint32_t curve_p[NUM_ECC_DIGITS];
|
||||
extern uint32_t curve_b[NUM_ECC_DIGITS];
|
||||
extern uint32_t curve_n[NUM_ECC_DIGITS];
|
||||
extern EccPoint curve_G;
|
||||
|
||||
int32_t ecc_make_key(EccPoint *p_publicKey, uint32_t p_privateKey[NUM_ECC_DIGITS],
|
||||
uint32_t p_random[NUM_ECC_DIGITS])
|
||||
{
|
||||
|
||||
/* Make sure the private key is in the range [1, n-1].
|
||||
* For the supported curve, n is always large enough
|
||||
* that we only need to subtract once at most.
|
||||
*/
|
||||
uint32_t p_tmp[NUM_ECC_DIGITS];
|
||||
|
||||
vli_set(p_privateKey, p_random);
|
||||
vli_sub(p_tmp, p_privateKey, curve_n, NUM_ECC_DIGITS);
|
||||
|
||||
vli_cond_set(p_privateKey, p_privateKey, p_tmp,
|
||||
vli_cmp(curve_n, p_privateKey, NUM_ECC_DIGITS) == 1);
|
||||
|
||||
if (vli_isZero(p_privateKey)) {
|
||||
return TC_CRYPTO_FAIL; /* The private key cannot be 0 (mod p). */
|
||||
}
|
||||
|
||||
EccPointJacobi P;
|
||||
|
||||
EccPoint_mult(&P, &curve_G, p_privateKey);
|
||||
EccPoint_toAffine(p_publicKey, &P);
|
||||
|
||||
return TC_CRYPTO_SUCCESS;
|
||||
}
|
||||
|
||||
/* Compute p_result = x^3 - 3x + b */
|
||||
static void curve_x_side(uint32_t p_result[NUM_ECC_DIGITS],
|
||||
uint32_t x[NUM_ECC_DIGITS])
|
||||
{
|
||||
|
||||
uint32_t _3[NUM_ECC_DIGITS] = {3}; /* -a = 3 */
|
||||
|
||||
vli_modSquare_fast(p_result, x); /* r = x^2 */
|
||||
vli_modSub(p_result, p_result, _3, curve_p); /* r = x^2 - 3 */
|
||||
vli_modMult_fast(p_result, p_result, x); /* r = x^3 - 3x */
|
||||
vli_modAdd(p_result, p_result, curve_b, curve_p); /* r = x^3 - 3x + b */
|
||||
|
||||
}
|
||||
|
||||
int32_t ecc_valid_public_key(EccPoint *p_publicKey)
|
||||
{
|
||||
uint32_t l_tmp1[NUM_ECC_DIGITS];
|
||||
uint32_t l_tmp2[NUM_ECC_DIGITS];
|
||||
|
||||
if (EccPoint_isZero(p_publicKey)) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((vli_cmp(curve_p, p_publicKey->x, NUM_ECC_DIGITS) != 1) ||
|
||||
(vli_cmp(curve_p, p_publicKey->y, NUM_ECC_DIGITS) != 1)) {
|
||||
return -2;
|
||||
}
|
||||
|
||||
vli_modSquare_fast(l_tmp1, p_publicKey->y); /* tmp1 = y^2 */
|
||||
|
||||
curve_x_side(l_tmp2, p_publicKey->x); /* tmp2 = x^3 - 3x + b */
|
||||
|
||||
/* Make sure that y^2 == x^3 + ax + b */
|
||||
if (vli_cmp(l_tmp1, l_tmp2, NUM_ECC_DIGITS) != 0) {
|
||||
return -3;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int32_t ecdh_shared_secret(uint32_t p_secret[NUM_ECC_DIGITS],
|
||||
EccPoint *p_publicKey, uint32_t p_privateKey[NUM_ECC_DIGITS])
|
||||
{
|
||||
|
||||
EccPoint p_point;
|
||||
EccPointJacobi P;
|
||||
|
||||
EccPoint_mult(&P, p_publicKey, p_privateKey);
|
||||
if (EccPointJacobi_isZero(&P)) {
|
||||
return TC_CRYPTO_FAIL;
|
||||
}
|
||||
EccPoint_toAffine(&p_point, &P);
|
||||
vli_set(p_secret, p_point.x);
|
||||
|
||||
return TC_CRYPTO_SUCCESS;
|
||||
}
|
117
lib/crypto/tinycrypt/source/ecc_dsa.c
Normal file
117
lib/crypto/tinycrypt/source/ecc_dsa.c
Normal file
|
@ -0,0 +1,117 @@
|
|||
/* ec_dsa.c - TinyCrypt implementation of EC-DSA */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/ecc.h>
|
||||
|
||||
extern uint32_t curve_n[NUM_ECC_DIGITS];
|
||||
extern EccPoint curve_G;
|
||||
extern uint32_t curve_nb[NUM_ECC_DIGITS + 1];
|
||||
|
||||
int32_t ecdsa_sign(uint32_t r[NUM_ECC_DIGITS], uint32_t s[NUM_ECC_DIGITS],
|
||||
uint32_t p_privateKey[NUM_ECC_DIGITS], uint32_t p_random[NUM_ECC_DIGITS],
|
||||
uint32_t p_hash[NUM_ECC_DIGITS])
|
||||
{
|
||||
|
||||
uint32_t k[NUM_ECC_DIGITS], tmp[NUM_ECC_DIGITS];
|
||||
EccPoint p_point;
|
||||
EccPointJacobi P;
|
||||
|
||||
if (vli_isZero(p_random)) {
|
||||
return TC_CRYPTO_FAIL; /* The random number must not be 0. */
|
||||
}
|
||||
|
||||
vli_set(k, p_random);
|
||||
|
||||
vli_sub(tmp, k, curve_n, NUM_ECC_DIGITS);
|
||||
vli_cond_set(k, k, tmp, vli_cmp(curve_n, k, NUM_ECC_DIGITS) == 1);
|
||||
|
||||
/* tmp = k * G */
|
||||
EccPoint_mult(&P, &curve_G, k);
|
||||
EccPoint_toAffine(&p_point, &P);
|
||||
|
||||
/* r = x1 (mod n) */
|
||||
vli_set(r, p_point.x);
|
||||
if (vli_cmp(curve_n, r, NUM_ECC_DIGITS) != 1) {
|
||||
vli_sub(r, r, curve_n, NUM_ECC_DIGITS);
|
||||
}
|
||||
|
||||
if (vli_isZero(r)) {
|
||||
return TC_CRYPTO_FAIL; /* If r == 0, fail (need a different random number). */
|
||||
}
|
||||
|
||||
vli_modMult(s, r, p_privateKey, curve_n, curve_nb); /* s = r*d */
|
||||
vli_modAdd(s, p_hash, s, curve_n); /* s = e + r*d */
|
||||
vli_modInv(k, k, curve_n, curve_nb); /* k = 1 / k */
|
||||
vli_modMult(s, s, k, curve_n, curve_nb); /* s = (e + r*d) / k */
|
||||
|
||||
return TC_CRYPTO_SUCCESS;
|
||||
}
|
||||
|
||||
int32_t ecdsa_verify(EccPoint *p_publicKey, uint32_t p_hash[NUM_ECC_DIGITS],
|
||||
uint32_t r[NUM_ECC_DIGITS], uint32_t s[NUM_ECC_DIGITS])
|
||||
{
|
||||
|
||||
uint32_t u1[NUM_ECC_DIGITS], u2[NUM_ECC_DIGITS];
|
||||
uint32_t z[NUM_ECC_DIGITS];
|
||||
EccPointJacobi P, R;
|
||||
EccPoint p_point;
|
||||
|
||||
if (vli_isZero(r) || vli_isZero(s)) {
|
||||
return TC_CRYPTO_FAIL; /* r, s must not be 0. */
|
||||
}
|
||||
|
||||
if ((vli_cmp(curve_n, r, NUM_ECC_DIGITS) != 1) ||
|
||||
(vli_cmp(curve_n, s, NUM_ECC_DIGITS) != 1)) {
|
||||
return TC_CRYPTO_FAIL; /* r, s must be < n. */
|
||||
}
|
||||
|
||||
/* Calculate u1 and u2. */
|
||||
vli_modInv(z, s, curve_n, curve_nb); /* Z = s^-1 */
|
||||
vli_modMult(u1, p_hash, z, curve_n, curve_nb); /* u1 = e/s */
|
||||
vli_modMult(u2, r, z, curve_n, curve_nb); /* u2 = r/s */
|
||||
|
||||
/* calculate P = u1*G + u2*Q */
|
||||
EccPoint_mult(&P, &curve_G, u1);
|
||||
EccPoint_mult(&R, p_publicKey, u2);
|
||||
EccPoint_add(&P, &R);
|
||||
EccPoint_toAffine(&p_point, &P);
|
||||
|
||||
/* Accept only if P.x == r. */
|
||||
vli_cond_set(
|
||||
p_point.x,
|
||||
p_point.x,
|
||||
z,
|
||||
vli_sub(z, p_point.x, curve_n, NUM_ECC_DIGITS));
|
||||
|
||||
return (vli_cmp(p_point.x, r, NUM_ECC_DIGITS) == 0);
|
||||
}
|
|
@ -31,6 +31,7 @@
|
|||
*/
|
||||
|
||||
#include <tinycrypt/hmac.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
|
||||
static void rekey(uint8_t *key, const uint8_t *new_key, uint32_t key_size)
|
||||
|
@ -141,5 +142,8 @@ int32_t tc_hmac_final(uint8_t *tag, uint32_t taglen, TCHmacState_t ctx)
|
|||
(void)tc_sha256_update(&ctx->hash_state, tag, TC_SHA256_DIGEST_SIZE);
|
||||
(void)tc_sha256_final(tag, &ctx->hash_state);
|
||||
|
||||
/* destroy the current state */
|
||||
_set(ctx, 0, sizeof(*ctx));
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
|
|
@ -32,6 +32,7 @@
|
|||
|
||||
#include <tinycrypt/hmac_prng.h>
|
||||
#include <tinycrypt/hmac.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
|
||||
/*
|
||||
|
@ -155,16 +156,17 @@ int32_t tc_hmac_prng_reseed(TCHmacPrng_t prng,
|
|||
if (additionallen == 0 ||
|
||||
additionallen > MAX_ALEN) {
|
||||
return TC_FAIL;
|
||||
}
|
||||
} else {
|
||||
/* call update for the seed and additional_input */
|
||||
update(prng, seed, seedlen);
|
||||
update(prng, additional_input, additionallen);
|
||||
}
|
||||
} else {
|
||||
/* call update only for the seed */
|
||||
update(prng, seed, seedlen);
|
||||
}
|
||||
|
||||
/* ... and enable hmac_prng_get */
|
||||
/* ... and enable hmac_prng_generate */
|
||||
prng->countdown = MAX_GENS;
|
||||
|
||||
return TC_SUCCESS;
|
||||
|
@ -181,7 +183,7 @@ int32_t tc_hmac_prng_generate(uint8_t *out, uint32_t outlen, TCHmacPrng_t prng)
|
|||
outlen > MAX_OUT) {
|
||||
return TC_FAIL;
|
||||
} else if (prng->countdown == 0) {
|
||||
return TC_RESEED_REQ;
|
||||
return TC_HMAC_PRNG_RESEED_REQ;
|
||||
}
|
||||
|
||||
prng->countdown--;
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
*/
|
||||
|
||||
#include <tinycrypt/sha256.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/utils.h>
|
||||
|
||||
static void compress(uint32_t *iv, const uint8_t *data);
|
||||
|
@ -130,6 +131,9 @@ int32_t tc_sha256_final(uint8_t *digest, TCSha256State_t s)
|
|||
*digest++ = (uint8_t)(t);
|
||||
}
|
||||
|
||||
/* destroy the current state */
|
||||
_set(s, 0, sizeof(*s));
|
||||
|
||||
return TC_SUCCESS;
|
||||
}
|
||||
|
||||
|
|
|
@ -31,6 +31,7 @@
|
|||
*/
|
||||
|
||||
#include <tinycrypt/utils.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
|
||||
#include <string.h>
|
||||
|
||||
|
@ -48,14 +49,14 @@ uint32_t _copy(uint8_t *to, uint32_t to_len,
|
|||
}
|
||||
}
|
||||
|
||||
void _set(uint8_t *to, uint8_t val, uint32_t len)
|
||||
void _set(void *to, uint8_t val, uint32_t len)
|
||||
{
|
||||
(void)memset(to, val, len);
|
||||
}
|
||||
|
||||
/*
|
||||
* Doubles the value of a byte for values up to 127. Original 'return
|
||||
* ((a<<1) ^ ((a>>7) * 0x1b))' re-written to avoid extra multiplicaiton which
|
||||
* ((a<<1) ^ ((a>>7) * 0x1b))' re-written to avoid extra multiplication which
|
||||
* the compiler won't be able to optimize
|
||||
*/
|
||||
uint8_t _double_byte(uint8_t a)
|
||||
|
@ -63,3 +64,15 @@ uint8_t _double_byte(uint8_t a)
|
|||
return (a & MASK_MOST_SIG_BIT) ?
|
||||
((a << 1) ^ MASK_TWENTY_SEVEN) : (a << 1);
|
||||
}
|
||||
|
||||
int32_t _compare(const uint8_t *a, const uint8_t *b, size_t size)
|
||||
{
|
||||
const uint8_t *tempa = a;
|
||||
const uint8_t *tempb = b;
|
||||
uint8_t result = 0;
|
||||
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
result |= tempa[i] ^ tempb[i];
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
|
|
@ -41,17 +41,18 @@
|
|||
- AES128 NIST variable-key and fixed-text
|
||||
*/
|
||||
|
||||
#include <test_utils.h>
|
||||
#include <tinycrypt/aes.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <test_utils.h>
|
||||
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <misc/printk.h>
|
||||
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#define NUM_OF_NIST_KEYS 16
|
||||
#define NUM_OF_FIXED_KEYS 128
|
||||
|
||||
|
|
|
@ -38,6 +38,7 @@
|
|||
*/
|
||||
|
||||
#include <tinycrypt/cbc_mode.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include "test_utils.h"
|
||||
|
||||
#include <stdlib.h>
|
||||
|
|
2
samples/crypto/test_ccm_mode/Makefile
Normal file
2
samples/crypto/test_ccm_mode/Makefile
Normal file
|
@ -0,0 +1,2 @@
|
|||
ccflags-y += -I$(srctree)/samples/include -I$(srctree)/lib/crypto/tinycrypt/include
|
||||
obj-y = test_ccm_mode.o
|
509
samples/crypto/test_ccm_mode/test_ccm_mode.c
Normal file
509
samples/crypto/test_ccm_mode/test_ccm_mode.c
Normal file
|
@ -0,0 +1,509 @@
|
|||
/* test_ccm_mode.c - TinyCrypt AES-CCM tests (RFC 3610 tests) */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
/*
|
||||
* DESCRIPTION
|
||||
* This module tests the following AES-CCM Mode routines:
|
||||
*
|
||||
* Scenarios tested include:
|
||||
* - AES128 CCM mode encryption RFC 3610 test vector #1
|
||||
* - AES128 CCM mode encryption RFC 3610 test vector #2
|
||||
* - AES128 CCM mode encryption RFC 3610 test vector #3
|
||||
* - AES128 CCM mode encryption RFC 3610 test vector #7
|
||||
* - AES128 CCM mode encryption RFC 3610 test vector #8
|
||||
* - AES128 CCM mode encryption RFC 3610 test vector #9
|
||||
* - AES128 CCM mode encryption No associated data
|
||||
* - AES128 CCM mode encryption No payhoad data
|
||||
*/
|
||||
|
||||
#include <tinycrypt/ccm_mode.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <test_utils.h>
|
||||
|
||||
#include <string.h>
|
||||
|
||||
#define CIPHERTEXT_LEN 50
|
||||
#define DECRYPTED_LEN 25
|
||||
#define NUM_NIST_KEYS 16
|
||||
#define NONCE_LEN 13
|
||||
#define HEADER_LEN 8
|
||||
#define M_LEN8 8
|
||||
#define M_LEN10 10
|
||||
#define DATA_BUF_LEN23 23
|
||||
#define DATA_BUF_LEN24 24
|
||||
#define DATA_BUF_LEN25 25
|
||||
#define EXPECTED_BUF_LEN31 31
|
||||
#define EXPECTED_BUF_LEN32 32
|
||||
#define EXPECTED_BUF_LEN33 33
|
||||
#define EXPECTED_BUF_LEN34 34
|
||||
#define EXPECTED_BUF_LEN35 35
|
||||
|
||||
uint32_t do_test(const uint8_t *key, uint8_t *nonce, size_t nlen,
|
||||
const uint8_t *hdr, size_t hlen, const uint8_t *data, size_t dlen,
|
||||
const uint8_t *expected, size_t elen, const int mlen)
|
||||
{
|
||||
|
||||
uint32_t result = TC_PASS;
|
||||
uint8_t ciphertext[CIPHERTEXT_LEN];
|
||||
uint8_t decrypted[DECRYPTED_LEN];
|
||||
struct tc_ccm_mode_struct c;
|
||||
struct tc_aes_key_sched_struct sched;
|
||||
|
||||
tc_aes128_set_encrypt_key(&sched, key);
|
||||
if (tc_ccm_config(&c, &sched, nonce, nlen, mlen) == 0) {
|
||||
TC_ERROR("CCM config failed in %s.\n", __func__);
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
|
||||
if (tc_ccm_generation_encryption(ciphertext, hdr, hlen, data, dlen, &c) == 0) {
|
||||
TC_ERROR("ccm_encrypt failed in %s.\n", __func__);
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
|
||||
if (memcmp(expected, ciphertext, elen) != 0) {
|
||||
TC_ERROR("ccm_encrypt produced wrong ciphertext in %s.\n", __func__);
|
||||
show_str("\t\tExpected", expected, elen);
|
||||
show_str("\t\tComputed", ciphertext, elen);
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
if (tc_ccm_decryption_verification(decrypted, hdr, hlen, ciphertext, dlen+mlen, &c) == 0) {
|
||||
TC_ERROR("ccm_decrypt failed in %s.\n", __func__);
|
||||
show_str("\t\tExpected", data, sizeof(data));
|
||||
show_str("\t\tComputed", decrypted, sizeof(decrypted));
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
exitTest1:
|
||||
TC_END_RESULT(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t test_vector_1(void)
|
||||
{
|
||||
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CCM test #1 (RFC 3610 test vector #1):\n", __func__);
|
||||
|
||||
/* RFC 3610 test vector #1 */
|
||||
const uint8_t key[NUM_NIST_KEYS] = {
|
||||
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb,
|
||||
0xcc, 0xcd, 0xce, 0xcf
|
||||
};
|
||||
uint8_t nonce[NONCE_LEN] = {
|
||||
0x00, 0x00, 0x00, 0x03, 0x02, 0x01, 0x00, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4,
|
||||
0xa5
|
||||
};
|
||||
const uint8_t hdr[HEADER_LEN] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
|
||||
};
|
||||
const uint8_t data[DATA_BUF_LEN23] = {
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
|
||||
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e
|
||||
};
|
||||
const uint8_t expected[EXPECTED_BUF_LEN31] = {
|
||||
0x58, 0x8c, 0x97, 0x9a, 0x61, 0xc6, 0x63, 0xd2, 0xf0, 0x66, 0xd0, 0xc2,
|
||||
0xc0, 0xf9, 0x89, 0x80, 0x6d, 0x5f, 0x6b, 0x61, 0xda, 0xc3, 0x84, 0x17,
|
||||
0xe8, 0xd1, 0x2c, 0xfd, 0xf9, 0x26, 0xe0
|
||||
};
|
||||
|
||||
uint16_t mlen = M_LEN8;
|
||||
|
||||
result = do_test(key, nonce, sizeof(nonce), hdr, sizeof(hdr), data, sizeof(data), expected,
|
||||
sizeof(expected), mlen);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t test_vector_2(void)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CCM test #2 (RFC 3610 test vector #2):\n");
|
||||
/* RFC 3610 test vector #2 */
|
||||
const uint8_t key[NUM_NIST_KEYS] = {
|
||||
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb,
|
||||
0xcc, 0xcd, 0xce, 0xcf
|
||||
};
|
||||
uint8_t nonce[NONCE_LEN] = {
|
||||
0x00, 0x00, 0x00, 0x04, 0x03, 0x02, 0x01, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4,
|
||||
0xa5
|
||||
};
|
||||
const uint8_t hdr[HEADER_LEN] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
|
||||
};
|
||||
const uint8_t data[DATA_BUF_LEN24] = {
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
|
||||
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
||||
};
|
||||
const uint8_t expected[EXPECTED_BUF_LEN32] = {
|
||||
0x72, 0xc9, 0x1a, 0x36, 0xe1, 0x35, 0xf8, 0xcf, 0x29, 0x1c, 0xa8, 0x94,
|
||||
0x08, 0x5c, 0x87, 0xe3, 0xcc, 0x15, 0xc4, 0x39, 0xc9, 0xe4, 0x3a, 0x3b,
|
||||
0xa0, 0x91, 0xd5, 0x6e, 0x10, 0x40, 0x09, 0x16
|
||||
};
|
||||
|
||||
uint16_t mlen = M_LEN8;
|
||||
|
||||
result = do_test(key, nonce, sizeof(nonce), hdr, sizeof(hdr), data, sizeof(data), expected,
|
||||
sizeof(expected), mlen);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t test_vector_3(void)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CCM test #3 (RFC 3610 test vector #3):\n");
|
||||
|
||||
/* RFC 3610 test vector #3 */
|
||||
const uint8_t key[NUM_NIST_KEYS] = {
|
||||
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb,
|
||||
0xcc, 0xcd, 0xce, 0xcf
|
||||
};
|
||||
uint8_t nonce[NONCE_LEN] = {
|
||||
0x00, 0x00, 0x00, 0x05, 0x04, 0x03, 0x02, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4,
|
||||
0xa5
|
||||
};
|
||||
const uint8_t hdr[HEADER_LEN] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
|
||||
};
|
||||
const uint8_t data[DATA_BUF_LEN25] = {
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
|
||||
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
||||
0x20
|
||||
};
|
||||
const uint8_t expected[EXPECTED_BUF_LEN33] = {
|
||||
0x51, 0xb1, 0xe5, 0xf4, 0x4a, 0x19, 0x7d, 0x1d, 0xa4, 0x6b, 0x0f, 0x8e,
|
||||
0x2d, 0x28, 0x2a, 0xe8, 0x71, 0xe8, 0x38, 0xbb, 0x64, 0xda, 0x85, 0x96,
|
||||
0x57, 0x4a, 0xda, 0xa7, 0x6f, 0xbd, 0x9f, 0xb0, 0xc5
|
||||
};
|
||||
|
||||
uint16_t mlen = M_LEN8;
|
||||
|
||||
result = do_test(key, nonce, sizeof(nonce), hdr, sizeof(hdr), data, sizeof(data), expected,
|
||||
sizeof(expected), mlen);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t test_vector_4(void)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CCM test #4 (RFC 3610 test vector #7):\n");
|
||||
|
||||
/* RFC 3610 test vector #7 */
|
||||
const uint8_t key[NUM_NIST_KEYS] = {
|
||||
0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb,
|
||||
0xcc, 0xcd, 0xce, 0xcf
|
||||
};
|
||||
uint8_t nonce[NONCE_LEN] = {
|
||||
0x00, 0x00, 0x00, 0x09, 0x08, 0x07, 0x06, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4,
|
||||
0xa5
|
||||
};
|
||||
const uint8_t hdr[HEADER_LEN] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
|
||||
};
|
||||
const uint8_t data[DATA_BUF_LEN23] = {
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
|
||||
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e
|
||||
};
|
||||
const uint8_t expected[EXPECTED_BUF_LEN33] = {
|
||||
0x01, 0x35, 0xD1, 0xB2, 0xC9, 0x5F, 0x41, 0xD5,
|
||||
0xD1, 0xD4, 0xFE, 0xC1, 0x85, 0xD1, 0x66, 0xB8,
|
||||
0x09, 0x4E, 0x99, 0x9D, 0xFE, 0xD9, 0x6C, 0x04,
|
||||
0x8C, 0x56, 0x60, 0x2C, 0x97, 0xAC, 0xBB, 0x74, 0x90
|
||||
};
|
||||
|
||||
uint16_t mlen = M_LEN10;
|
||||
|
||||
result = do_test(key, nonce, sizeof(nonce), hdr, sizeof(hdr), data, sizeof(data), expected,
|
||||
sizeof(expected), mlen);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t test_vector_5(void)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CCM test #5 (RFC 3610 test vector #8):\n");
|
||||
|
||||
/* RFC 3610 test vector #8 */
|
||||
const uint8_t key[NUM_NIST_KEYS] = {
|
||||
0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
|
||||
0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF
|
||||
};
|
||||
uint8_t nonce[NONCE_LEN] = {
|
||||
0x00, 0x00, 0x00, 0x0A, 0x09, 0x08, 0x07, 0xA0,
|
||||
0xA1, 0xA2, 0xA3, 0xA4, 0xA5
|
||||
};
|
||||
const uint8_t hdr[HEADER_LEN] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
|
||||
};
|
||||
const uint8_t data[DATA_BUF_LEN24] = {
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
|
||||
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f
|
||||
};
|
||||
const uint8_t expected[EXPECTED_BUF_LEN34] = {
|
||||
0x7B, 0x75, 0x39, 0x9A, 0xC0, 0x83, 0x1D, 0xD2,
|
||||
0xF0, 0xBB, 0xD7, 0x58, 0x79, 0xA2, 0xFD, 0x8F,
|
||||
0x6C, 0xAE, 0x6B, 0x6C, 0xD9, 0xB7, 0xDB, 0x24,
|
||||
0xC1, 0x7B, 0x44, 0x33, 0xF4, 0x34, 0x96, 0x3F, 0x34, 0xB4
|
||||
};
|
||||
|
||||
uint16_t mlen = M_LEN10;
|
||||
|
||||
result = do_test(key, nonce, sizeof(nonce), hdr, sizeof(hdr), data, sizeof(data), expected,
|
||||
sizeof(expected), mlen);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t test_vector_6(void)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CCM test #6 (RFC 3610 test vector #9):\n");
|
||||
|
||||
/* RFC 3610 test vector #9 */
|
||||
const uint8_t key[NUM_NIST_KEYS] = {
|
||||
0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
|
||||
0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF
|
||||
};
|
||||
uint8_t nonce[NONCE_LEN] = {
|
||||
0x00, 0x00, 0x00, 0x0B, 0x0A, 0x09, 0x08, 0xA0,
|
||||
0xA1, 0xA2, 0xA3, 0xA4, 0xA5
|
||||
};
|
||||
const uint8_t hdr[HEADER_LEN] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
|
||||
};
|
||||
const uint8_t data[DATA_BUF_LEN25] = {
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
|
||||
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20
|
||||
};
|
||||
const uint8_t expected[EXPECTED_BUF_LEN35] = {
|
||||
0x82, 0x53, 0x1a, 0x60, 0xCC, 0x24, 0x94, 0x5a,
|
||||
0x4b, 0x82, 0x79, 0x18, 0x1a, 0xb5, 0xc8, 0x4d,
|
||||
0xf2, 0x1c, 0xe7, 0xf9, 0xb7, 0x3f, 0x42, 0xe1,
|
||||
0x97, 0xea, 0x9c, 0x07, 0xe5, 0x6b, 0x5e, 0xb1, 0x7e, 0x5f, 0x4e
|
||||
};
|
||||
|
||||
uint16_t mlen = M_LEN10;
|
||||
|
||||
result = do_test(key, nonce, sizeof(nonce), hdr, sizeof(hdr), data, sizeof(data), expected,
|
||||
sizeof(expected), mlen);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
uint32_t test_vector_7(void)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CCM test #7 (no associated data):\n");
|
||||
|
||||
/* Test based on RFC 3610 test vector #9 but with no associated data */
|
||||
const uint8_t key[NUM_NIST_KEYS] = {
|
||||
0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
|
||||
0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF
|
||||
};
|
||||
uint8_t nonce[NONCE_LEN] = {
|
||||
0x00, 0x00, 0x00, 0x0B, 0x0A, 0x09, 0x08, 0xA0,
|
||||
0xA1, 0xA2, 0xA3, 0xA4, 0xA5
|
||||
};
|
||||
uint8_t *hdr = NULL;
|
||||
|
||||
uint8_t data[DATA_BUF_LEN25] = {
|
||||
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
|
||||
0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20
|
||||
};
|
||||
|
||||
struct tc_ccm_mode_struct c;
|
||||
struct tc_aes_key_sched_struct sched;
|
||||
uint8_t decrypted[DECRYPTED_LEN];
|
||||
uint8_t ciphertext[CIPHERTEXT_LEN];
|
||||
|
||||
uint16_t mlen = M_LEN10;
|
||||
|
||||
tc_aes128_set_encrypt_key(&sched, key);
|
||||
if (tc_ccm_config(&c, &sched, nonce, sizeof(nonce), mlen) == 0) {
|
||||
TC_ERROR("ccm_config failed in %s.\n", __func__);
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
if (tc_ccm_generation_encryption(ciphertext, hdr, 0, data, sizeof(data), &c) == 0) {
|
||||
TC_ERROR("ccm_encryption failed in %s.\n", __func__);
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
if (tc_ccm_decryption_verification(decrypted, hdr, 0, ciphertext,
|
||||
sizeof(data)+mlen, &c) == 0) {
|
||||
TC_ERROR("ccm_decrypt failed in %s.\n", __func__);
|
||||
show_str("\t\tExpected", data, sizeof(data));
|
||||
show_str("\t\tComputed", decrypted, sizeof(decrypted));
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
exitTest1:
|
||||
TC_END_RESULT(result);
|
||||
return result;
|
||||
|
||||
}
|
||||
|
||||
uint32_t test_vector_8(void)
|
||||
{
|
||||
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CCM test #8 (no payload data):\n");
|
||||
|
||||
/* Test based on RFC 3610 test vector #9 but with no payload data */
|
||||
const uint8_t key[NUM_NIST_KEYS] = {
|
||||
0xC0, 0xC1, 0xC2, 0xC3, 0xC4, 0xC5, 0xC6, 0xC7,
|
||||
0xC8, 0xC9, 0xCA, 0xCB, 0xCC, 0xCD, 0xCE, 0xCF
|
||||
};
|
||||
uint8_t nonce[NONCE_LEN] = {
|
||||
0x00, 0x00, 0x00, 0x0B, 0x0A, 0x09, 0x08, 0xA0,
|
||||
0xA1, 0xA2, 0xA3, 0xA4, 0xA5
|
||||
};
|
||||
const uint8_t hdr[8] = {
|
||||
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07
|
||||
};
|
||||
|
||||
uint8_t *data = NULL;
|
||||
|
||||
struct tc_ccm_mode_struct c;
|
||||
struct tc_aes_key_sched_struct sched;
|
||||
uint8_t decrypted[DECRYPTED_LEN];
|
||||
uint8_t ciphertext[CIPHERTEXT_LEN];
|
||||
|
||||
uint16_t mlen = M_LEN10;
|
||||
|
||||
tc_aes128_set_encrypt_key(&sched, key);
|
||||
if (tc_ccm_config(&c, &sched, nonce, sizeof(nonce), mlen) == 0) {
|
||||
TC_ERROR("CCM config failed in %s.\n", __func__);
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
if (tc_ccm_generation_encryption(ciphertext, hdr, sizeof(hdr), data, 0, &c) == 0) {
|
||||
TC_ERROR("ccm_encrypt failed in %s.\n", __func__);
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
if (tc_ccm_decryption_verification(decrypted, hdr, sizeof(hdr),
|
||||
ciphertext, mlen, &c) == 0) {
|
||||
TC_ERROR("ccm_decrypt failed in %s.\n", __func__);
|
||||
show_str("\t\tExpected", data, sizeof(data));
|
||||
show_str("\t\tComputed", decrypted, sizeof(decrypted));
|
||||
result = TC_FAIL;
|
||||
goto exitTest1;
|
||||
}
|
||||
|
||||
exitTest1:
|
||||
TC_END_RESULT(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* Main task to test CCM
|
||||
*/
|
||||
|
||||
#ifdef CONFIG_MICROKERNEL
|
||||
void mainloop(void)
|
||||
#else
|
||||
void main(void)
|
||||
#endif
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_START("Performing CCM tests:");
|
||||
|
||||
result = test_vector_1();
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CCM test #1 (RFC 3610 test vector #1) failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
result = test_vector_2();
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CCM test #2 failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
result = test_vector_3();
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CCM test #3 failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
result = test_vector_4();
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CCM test #4 failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
result = test_vector_5();
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CCM test #5 failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
result = test_vector_6();
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CCM test #6 failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
result = test_vector_7();
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CCM test #7 failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
result = test_vector_8();
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CCM test #8 (no payload data) failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
|
||||
TC_PRINT("All CCM tests succeeded!\n");
|
||||
|
||||
exitTest:
|
||||
TC_END_RESULT(result);
|
||||
TC_END_REPORT(result);
|
||||
}
|
2
samples/crypto/test_cmac_mode/Makefile
Normal file
2
samples/crypto/test_cmac_mode/Makefile
Normal file
|
@ -0,0 +1,2 @@
|
|||
ccflags-y += -I$(srctree)/samples/include -I$(srctree)/lib/crypto/tinycrypt/include
|
||||
obj-y = test_cmac_mode.o
|
309
samples/crypto/test_cmac_mode/test_cmac_mode.c
Normal file
309
samples/crypto/test_cmac_mode/test_cmac_mode.c
Normal file
|
@ -0,0 +1,309 @@
|
|||
/* test_cmac_mode.c - TinyCrypt AES-CMAC tests (including SP 800-38B tests) */
|
||||
|
||||
/*
|
||||
* Copyright (C) 2015 by Intel Corporation, All Rights Reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* - Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* - Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
*
|
||||
* - Neither the name of Intel Corporation nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
/*
|
||||
* DESCRIPTION
|
||||
* This module tests the following AES-CMAC test (including SP 800-38B):
|
||||
*
|
||||
* Scenarios tested include:
|
||||
* - CMAC test #1 (GF(2^128) double))
|
||||
* - CMAC test #2 null msg (SP 800-38B test vector #1)
|
||||
* - CMAC test #3 1 block msg (SP 800-38B test vector #2)
|
||||
* - CMAC test #4 320 bit msg (SP 800-38B test vector #3)
|
||||
* - CMAC test #5 512 bit msg(SP 800-38B test vector #4)
|
||||
*/
|
||||
|
||||
#include <tinycrypt/cmac_mode.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <tinycrypt/aes.h>
|
||||
#include <test_utils.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#define BUF_LEN 16
|
||||
|
||||
static void show(const char *label, const uint8_t *s, size_t slen)
|
||||
{
|
||||
uint32_t i;
|
||||
|
||||
TC_PRINT("%s\t", label);
|
||||
for (i = 0; i < slen; ++i) {
|
||||
TC_PRINT("%02x", s[i]);
|
||||
}
|
||||
TC_PRINT("\n");
|
||||
}
|
||||
|
||||
extern void gf_double(uint8_t *out, uint8_t *in);
|
||||
|
||||
static uint32_t verify_gf_2_128_double(uint8_t *K1, uint8_t *K2, struct tc_cmac_struct s)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CMAC test #1 (GF(2^128) double):\n");
|
||||
|
||||
uint8_t zero[BUF_LEN];
|
||||
uint8_t L[BUF_LEN];
|
||||
const uint8_t l[BUF_LEN] = {
|
||||
0x7d, 0xf7, 0x6b, 0x0c, 0x1a, 0xb8, 0x99, 0xb3,
|
||||
0x3e, 0x42, 0xf0, 0x47, 0xb9, 0x1b, 0x54, 0x6f
|
||||
};
|
||||
const uint8_t k1[BUF_LEN] = {
|
||||
0xfb, 0xee, 0xd6, 0x18, 0x35, 0x71, 0x33, 0x66,
|
||||
0x7c, 0x85, 0xe0, 0x8f, 0x72, 0x36, 0xa8, 0xde
|
||||
};
|
||||
const uint8_t k2[BUF_LEN] = {
|
||||
0xf7, 0xdd, 0xac, 0x30, 0x6a, 0xe2, 0x66, 0xcc,
|
||||
0xf9, 0x0b, 0xc1, 0x1e, 0xe4, 0x6d, 0x51, 0x3b
|
||||
};
|
||||
|
||||
(void) memset(zero, '\0', sizeof(zero));
|
||||
tc_aes_encrypt(L, zero, s.sched);
|
||||
if (memcmp(L, l, BUF_LEN) != 0) {
|
||||
TC_ERROR("AES encryption failed in %s.\n", __func__);
|
||||
show("expected L =", l, sizeof(l));
|
||||
show("computed L =", L, sizeof(L));
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
gf_double(K1, L);
|
||||
if (memcmp(K1, k1, BUF_LEN) != 0) {
|
||||
TC_ERROR("gf_2_128_double failed when msb = 0\n", __func__);
|
||||
show("expected K1 =", k1, sizeof(k1));
|
||||
show("computed K1 =", K1, sizeof(k1));
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
gf_double(K2, K1);
|
||||
if (memcmp(K2, k2, BUF_LEN) != 0) {
|
||||
TC_ERROR("gf_2_128_double failed when msb = 1\n", __func__);
|
||||
show("expected K2 =", k2, sizeof(k2));
|
||||
show("computed K2 =", K2, sizeof(k2));
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
TC_END_RESULT(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
static uint32_t verify_cmac_null_msg(TCCmacState_t s)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CMAC test #2 (SP 800-38B test vector #1):\n");
|
||||
|
||||
const uint8_t tag[BUF_LEN] = {
|
||||
0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28,
|
||||
0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46
|
||||
};
|
||||
uint8_t Tag[BUF_LEN];
|
||||
|
||||
(void) tc_cmac_init(s);
|
||||
(void) tc_cmac_update(s, (const uint8_t *) 0, 0);
|
||||
(void) tc_cmac_final(Tag, s);
|
||||
|
||||
if (memcmp(Tag, tag, BUF_LEN) != 0) {
|
||||
TC_ERROR("aes_cmac failed with null msg = 1\n", __func__);
|
||||
show("expected Tag =", tag, sizeof(tag));
|
||||
show("computed Tag =", Tag, sizeof(Tag));
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
TC_END_RESULT(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
static uint32_t verify_cmac_1_block_msg(TCCmacState_t s)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CMAC test #3 (SP 800-38B test vector #2):\n");
|
||||
|
||||
const uint8_t msg[BUF_LEN] = {
|
||||
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
|
||||
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a
|
||||
};
|
||||
const uint8_t tag[BUF_LEN] = {
|
||||
0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44,
|
||||
0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c
|
||||
};
|
||||
uint8_t Tag[BUF_LEN];
|
||||
|
||||
(void) tc_cmac_init(s);
|
||||
(void) tc_cmac_update(s, msg, sizeof(msg));
|
||||
(void) tc_cmac_final(Tag, s);
|
||||
|
||||
if (memcmp(Tag, tag, BUF_LEN) != 0) {
|
||||
TC_ERROR("aes_cmac failed with 1 block msg\n", __func__);
|
||||
show("aes_cmac failed with 1 block msg =", msg, sizeof(msg));
|
||||
show("expected Tag =", tag, sizeof(tag));
|
||||
show("computed Tag =", Tag, sizeof(Tag));
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
TC_END_RESULT(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
static uint32_t verify_cmac_320_bit_msg(TCCmacState_t s)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CMAC test #4 (SP 800-38B test vector #3):\n");
|
||||
|
||||
const uint8_t msg[40] = {
|
||||
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
|
||||
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
|
||||
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
|
||||
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
|
||||
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11
|
||||
};
|
||||
const uint8_t tag[BUF_LEN] = {
|
||||
0xdf, 0xa6, 0x67, 0x47, 0xde, 0x9a, 0xe6, 0x30,
|
||||
0x30, 0xca, 0x32, 0x61, 0x14, 0x97, 0xc8, 0x27
|
||||
};
|
||||
uint8_t Tag[BUF_LEN];
|
||||
|
||||
(void) tc_cmac_init(s);
|
||||
(void) tc_cmac_update(s, msg, sizeof(msg));
|
||||
(void) tc_cmac_final(Tag, s);
|
||||
|
||||
if (memcmp(Tag, tag, BUF_LEN) != 0) {
|
||||
TC_ERROR("aes_cmac failed with 320 bit msg\n", __func__);
|
||||
show("aes_cmac failed with 320 bit msg =", msg, sizeof(msg));
|
||||
show("expected Tag =", tag, sizeof(tag));
|
||||
show("computed Tag =", Tag, sizeof(Tag));
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
TC_END_RESULT(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
static uint32_t verify_cmac_512_bit_msg(TCCmacState_t s)
|
||||
{
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
TC_PRINT("Performing CMAC test #5 (SP 800-38B test vector #4)\n");
|
||||
|
||||
const uint8_t msg[64] = {
|
||||
0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
|
||||
0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
|
||||
0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
|
||||
0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
|
||||
0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
|
||||
0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
|
||||
0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
|
||||
0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10
|
||||
};
|
||||
const uint8_t tag[BUF_LEN] = {
|
||||
0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92,
|
||||
0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe
|
||||
};
|
||||
uint8_t Tag[BUF_LEN];
|
||||
|
||||
(void)tc_cmac_init(s);
|
||||
(void)tc_cmac_update(s, msg, sizeof(msg));
|
||||
(void)tc_cmac_final(Tag, s);
|
||||
|
||||
if (memcmp(Tag, tag, BUF_LEN) != 0) {
|
||||
TC_ERROR("aes_cmac failed with 512 bit msg\n", __func__);
|
||||
show("aes_cmac failed with 512 bit msg =", msg, sizeof(msg));
|
||||
show("expected Tag =", tag, sizeof(tag));
|
||||
show("computed Tag =", Tag, sizeof(Tag));
|
||||
return TC_FAIL;
|
||||
}
|
||||
|
||||
TC_END_RESULT(result);
|
||||
return result;
|
||||
}
|
||||
|
||||
/*
|
||||
* Main task to test CMAC
|
||||
*/
|
||||
|
||||
#ifdef CONFIG_MICROKERNEL
|
||||
void mainloop(void)
|
||||
#else
|
||||
void main(void)
|
||||
#endif
|
||||
{
|
||||
|
||||
uint32_t result = TC_PASS;
|
||||
|
||||
struct tc_cmac_struct state;
|
||||
struct tc_aes_key_sched_struct sched;
|
||||
|
||||
const uint8_t key[BUF_LEN] = {
|
||||
0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
|
||||
0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c
|
||||
};
|
||||
uint8_t K1[BUF_LEN], K2[BUF_LEN];
|
||||
|
||||
TC_START("Performing CMAC tests:");
|
||||
|
||||
(void) tc_cmac_setup(&state, key, &sched);
|
||||
result = verify_gf_2_128_double(K1, K2, state);
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CMAC test #1 (128 double) failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
(void) tc_cmac_setup(&state, key, &sched);
|
||||
result = verify_cmac_null_msg(&state);
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CMAC test #2 (null msg) failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
(void) tc_cmac_setup(&state, key, &sched);
|
||||
result = verify_cmac_1_block_msg(&state);
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CMAC test #3 (1 block msg)failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
(void) tc_cmac_setup(&state, key, &sched);
|
||||
result = verify_cmac_320_bit_msg(&state);
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CMAC test #4 (320 bit msg) failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
(void) tc_cmac_setup(&state, key, &sched);
|
||||
result = verify_cmac_512_bit_msg(&state);
|
||||
if (result == TC_FAIL) { /* terminate test */
|
||||
TC_ERROR("CMAC test #5 (512 bit msg)failed.\n");
|
||||
goto exitTest;
|
||||
}
|
||||
|
||||
TC_PRINT("All CMAC tests succeeded!\n");
|
||||
|
||||
exitTest:
|
||||
TC_END_RESULT(result);
|
||||
TC_END_REPORT(result);
|
||||
}
|
|
@ -39,6 +39,7 @@
|
|||
*/
|
||||
|
||||
#include <tinycrypt/ctr_mode.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <test_utils.h>
|
||||
|
||||
#include <stdio.h>
|
||||
|
|
|
@ -38,8 +38,9 @@
|
|||
- HMAC tests (RFC 4231 test vectors)
|
||||
*/
|
||||
|
||||
#include <test_utils.h>
|
||||
#include <tinycrypt/hmac.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <test_utils.h>
|
||||
|
||||
uint32_t do_hmac_test(TCHmacState_t h, uint32_t testnum, const uint8_t *data,
|
||||
size_t datalen, const uint8_t *expected,
|
||||
|
|
|
@ -40,11 +40,12 @@
|
|||
- HMAC-PRNG generate)
|
||||
*/
|
||||
|
||||
#include <tinycrypt/hmac_prng.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
|
||||
#include <stdio.h>
|
||||
#include <tc_util.h>
|
||||
#include <drivers/system_timer.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#include <tinycrypt/hmac_prng.h>
|
||||
|
||||
/*
|
||||
* Main task to test AES
|
||||
|
|
|
@ -39,6 +39,7 @@
|
|||
*/
|
||||
|
||||
#include <tinycrypt/sha256.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
#include <test_utils.h>
|
||||
|
||||
#include <stdio.h>
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
#define __TEST_UTILS_H__
|
||||
|
||||
#include <tc_util.h>
|
||||
#include <tinycrypt/constants.h>
|
||||
|
||||
static inline void show_str(const char *label, const uint8_t *s, size_t len)
|
||||
{
|
||||
|
|
7
samples/microkernel/test/test_ccm_mode/Makefile
Normal file
7
samples/microkernel/test/test_ccm_mode/Makefile
Normal file
|
@ -0,0 +1,7 @@
|
|||
BOARD ?= qemu_x86
|
||||
MDEF_FILE = prj.mdef
|
||||
KERNEL_TYPE = micro
|
||||
CONF_FILE = prj_$(ARCH).conf
|
||||
SOURCE_DIR = $(ZEPHYR_BASE)/samples/crypto/test_ccm_mode/
|
||||
|
||||
include $(ZEPHYR_BASE)/Makefile.inc
|
60
samples/microkernel/test/test_ccm_mode/README.txt
Normal file
60
samples/microkernel/test/test_ccm_mode/README.txt
Normal file
|
@ -0,0 +1,60 @@
|
|||
Title: test_aes_ccm
|
||||
|
||||
Description:
|
||||
|
||||
This test verifies that the TinyCrypt AES APIs operate as expected.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
Building and Running Project:
|
||||
|
||||
This microkernel project outputs to the console. It can be built and executed
|
||||
on QEMU as follows:
|
||||
|
||||
make qemu
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
Troubleshooting:
|
||||
|
||||
Problems caused by out-dated project information can be addressed by
|
||||
issuing one of the following commands then rebuilding the project:
|
||||
|
||||
make clean # discard results of previous builds
|
||||
# but keep existing configuration info
|
||||
or
|
||||
make pristine # discard results of previous builds
|
||||
# and restore pre-defined configuration info
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
Sample Output:
|
||||
tc_start() - Performing CCM tests:
|
||||
Performing CCM test #1 (RFC 3610 test vector #1):
|
||||
===================================================================
|
||||
PASS - do_test.
|
||||
Performing CCM test #2 (RFC 3610 test vector #2):
|
||||
===================================================================
|
||||
PASS - do_test.
|
||||
Performing CCM test #3 (RFC 3610 test vector #3):
|
||||
===================================================================
|
||||
PASS - do_test.
|
||||
Performing CCM test #4 (RFC 3610 test vector #7):
|
||||
===================================================================
|
||||
PASS - do_test.
|
||||
Performing CCM test #5 (RFC 3610 test vector #8):
|
||||
===================================================================
|
||||
PASS - do_test.
|
||||
Performing CCM test #6 (RFC 3610 test vector #9):
|
||||
===================================================================
|
||||
PASS - do_test.
|
||||
Performing CCM test #7 (no associated data):
|
||||
===================================================================
|
||||
PASS - test_vector_7.
|
||||
Performing CCM test #8 (no payload data):
|
||||
===================================================================
|
||||
PASS - test_vector_8.
|
||||
All CCM tests succeeded!
|
||||
===================================================================
|
||||
PASS - mainloop.
|
||||
===================================================================
|
||||
PROJECT EXECUTION SUCCESSFUL
|
5
samples/microkernel/test/test_ccm_mode/prj.mdef
Normal file
5
samples/microkernel/test/test_ccm_mode/prj.mdef
Normal file
|
@ -0,0 +1,5 @@
|
|||
% Application : test AES128-CCM mode TinyCrypt APIs
|
||||
|
||||
% TASK NAME PRIO ENTRY STACK GROUPS
|
||||
% ====================================================
|
||||
TASK tStartTask 5 mainloop 1024 [EXE]
|
4
samples/microkernel/test/test_ccm_mode/prj_arm.conf
Normal file
4
samples/microkernel/test/test_ccm_mode/prj_arm.conf
Normal file
|
@ -0,0 +1,4 @@
|
|||
CONFIG_TEST_RANDOM_GENERATOR=y
|
||||
CONFIG_TINYCRYPT=y
|
||||
CONFIG_TINYCRYPT_AES=y
|
||||
CONFIG_TINYCRYPT_AES_CCM=y
|
4
samples/microkernel/test/test_ccm_mode/prj_x86.conf
Normal file
4
samples/microkernel/test/test_ccm_mode/prj_x86.conf
Normal file
|
@ -0,0 +1,4 @@
|
|||
CONFIG_TEST_RANDOM_GENERATOR=y
|
||||
CONFIG_TINYCRYPT=y
|
||||
CONFIG_TINYCRYPT_AES=y
|
||||
CONFIG_TINYCRYPT_AES_CCM=y
|
4
samples/microkernel/test/test_ccm_mode/testcase.ini
Normal file
4
samples/microkernel/test/test_ccm_mode/testcase.ini
Normal file
|
@ -0,0 +1,4 @@
|
|||
[test]
|
||||
tags = crypto aes ccm
|
||||
build_only = false
|
||||
arch_whitelist = x86 arm
|
7
samples/microkernel/test/test_cmac_mode/Makefile
Normal file
7
samples/microkernel/test/test_cmac_mode/Makefile
Normal file
|
@ -0,0 +1,7 @@
|
|||
BOARD ?= qemu_x86
|
||||
MDEF_FILE = prj.mdef
|
||||
KERNEL_TYPE = micro
|
||||
CONF_FILE = prj_$(ARCH).conf
|
||||
SOURCE_DIR = $(ZEPHYR_BASE)/samples/crypto/test_cmac_mode/
|
||||
|
||||
include $(ZEPHYR_BASE)/Makefile.inc
|
51
samples/microkernel/test/test_cmac_mode/README.txt
Normal file
51
samples/microkernel/test/test_cmac_mode/README.txt
Normal file
|
@ -0,0 +1,51 @@
|
|||
Title: test_aes_cmac
|
||||
|
||||
Description:
|
||||
|
||||
This test verifies that the TinyCrypt AES APIs operate as expected.
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
Building and Running Project:
|
||||
|
||||
This microkernel project outputs to the console. It can be built and executed
|
||||
on QEMU as follows:
|
||||
|
||||
make qemu
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
Troubleshooting:
|
||||
|
||||
Problems caused by out-dated project information can be addressed by
|
||||
issuing one of the following commands then rebuilding the project:
|
||||
|
||||
make clean # discard results of previous builds
|
||||
# but keep existing configuration info
|
||||
or
|
||||
make pristine # discard results of previous builds
|
||||
# and restore pre-defined configuration info
|
||||
|
||||
--------------------------------------------------------------------------------
|
||||
|
||||
Sample Output:
|
||||
tc_start() - Performing CMAC tests:
|
||||
Performing CMAC test #1 (GF(2^128) double):
|
||||
===================================================================
|
||||
PASS - verify_gf_2_128_double.
|
||||
Performing CMAC test #2 (SP 800-38B test vector #1):
|
||||
===================================================================
|
||||
PASS - verify_cmac_null_msg.
|
||||
Performing CMAC test #3 (SP 800-38B test vector #2):
|
||||
===================================================================
|
||||
PASS - verify_cmac_1_block_msg.
|
||||
Performing CMAC test #4 (SP 800-38B test vector #3):
|
||||
===================================================================
|
||||
PASS - verify_cmac_320_bit_msg.
|
||||
Performing CMAC test #5 (SP 800-38B test vector #4)
|
||||
===================================================================
|
||||
PASS - verify_cmac_512_bit_msg.
|
||||
All CMAC tests succeeded!
|
||||
===================================================================
|
||||
PASS - mainloop.
|
||||
===================================================================
|
||||
PROJECT EXECUTION SUCCESSFUL
|
5
samples/microkernel/test/test_cmac_mode/prj.mdef
Normal file
5
samples/microkernel/test/test_cmac_mode/prj.mdef
Normal file
|
@ -0,0 +1,5 @@
|
|||
% Application : test AES-CMAC mode TinyCrypt APIs
|
||||
|
||||
% TASK NAME PRIO ENTRY STACK GROUPS
|
||||
% ====================================================
|
||||
TASK tStartTask 5 mainloop 1024 [EXE]
|
4
samples/microkernel/test/test_cmac_mode/prj_arm.conf
Normal file
4
samples/microkernel/test/test_cmac_mode/prj_arm.conf
Normal file
|
@ -0,0 +1,4 @@
|
|||
CONFIG_TEST_RANDOM_GENERATOR=y
|
||||
CONFIG_TINYCRYPT=y
|
||||
CONFIG_TINYCRYPT_AES=y
|
||||
CONFIG_TINYCRYPT_AES_CMAC=y
|
4
samples/microkernel/test/test_cmac_mode/prj_x86.conf
Normal file
4
samples/microkernel/test/test_cmac_mode/prj_x86.conf
Normal file
|
@ -0,0 +1,4 @@
|
|||
CONFIG_TEST_RANDOM_GENERATOR=y
|
||||
CONFIG_TINYCRYPT=y
|
||||
CONFIG_TINYCRYPT_AES=y
|
||||
CONFIG_TINYCRYPT_AES_CMAC=y
|
4
samples/microkernel/test/test_cmac_mode/testcase.ini
Normal file
4
samples/microkernel/test/test_cmac_mode/testcase.ini
Normal file
|
@ -0,0 +1,4 @@
|
|||
[test]
|
||||
tags = crypto aes cmac
|
||||
build_only = false
|
||||
arch_whitelist = x86 arm
|
Loading…
Add table
Add a link
Reference in a new issue