scripts: dts: write new gen_defines.py

This is joint work with Kumar Gala (see signed-off-by).

This supports a new devicetree macro syntax coming. It's not really
worth mixing up the old and the new generation scripts into one file,
because:

- we aim to remove support for the old macros at some point, so it
  will be cleaner to start fresh with a new script based on the old one
  that only generates the new syntax

- it will avoid regressions to leave the existing code alone while
  we're moving users to the new names

Keep the existing script by moving it to gen_legacy_defines.py and
changing a few comments and strings around. It's responsible for
generating:

- devicetree.conf: only needed by deprecated kconfigfunctions
- devicetree_legacy_unfixed.h: "old" devicetree_unfixed.h macros

Put a new gen_defines.py in its place. It generates:

- zephyr.dts
- devicetree_unfixed.h in the new syntax

Include devicetree_legacy_unfixed.h from devicetree.h so no DT users
are affected by this change.

Signed-off-by: Martí Bolívar <marti.bolivar@nordicsemi.no>
Signed-off-by: Kumar Gala <kumar.gala@linaro.org>
This commit is contained in:
Martí Bolívar 2020-02-28 15:26:52 -08:00 committed by Kumar Gala
commit dc85edd2e9
4 changed files with 682 additions and 39 deletions

View file

@ -4,16 +4,22 @@ file(MAKE_DIRECTORY ${PROJECT_BINARY_DIR}/include/generated)
# Zephyr code can configure itself based on a KConfig'uration with the
# header file autoconf.h. There exists an analogous file devicetree_unfixed.h
# that allows configuration based on information encoded in DTS.
# that allows configuration based on information encoded in DTS, and a similar
# file with legacy contents called devicetree_unfixed_legacy.h.
#
# Here we call on dtc, the gcc preprocessor, and
# scripts/dts/gen_legacy_defines.py to generate this header file at
# CMake configure-time.
# Here we call on dtc, the gcc preprocessor,
# scripts/dts/gen_defines.py, and scripts/dts/gen_legacy_defines.py to
# generate various DT-related files at CMake configure-time.
#
# See ~/zephyr/doc/dts
set(DEVICETREE_UNFIXED_H ${PROJECT_BINARY_DIR}/include/generated/devicetree_unfixed.h)
set(DEVICETREE_CONF ${PROJECT_BINARY_DIR}/include/generated/devicetree.conf)
set(DTS_POST_CPP ${PROJECT_BINARY_DIR}/${BOARD}.dts.pre.tmp)
# The devicetree.conf file is still needed by some deprecated
# functions in kconfigfunctions.py.
#
# See the Devicetree user guide in the Zephyr documentation for details.
set(ZEPHYR_DTS ${PROJECT_BINARY_DIR}/zephyr.dts)
set(DEVICETREE_UNFIXED_H ${PROJECT_BINARY_DIR}/include/generated/devicetree_unfixed.h)
set(DEVICETREE_UNFIXED_LEGACY_H ${PROJECT_BINARY_DIR}/include/generated/devicetree_legacy_unfixed.h)
set(DEVICETREE_CONF ${PROJECT_BINARY_DIR}/include/generated/devicetree.conf)
set(DTS_POST_CPP ${PROJECT_BINARY_DIR}/${BOARD}.dts.pre.tmp)
set_ifndef(DTS_SOURCE ${BOARD_DIR}/${BOARD}.dts)
@ -67,9 +73,9 @@ if(SUPPORTS_DTS)
-include ${dts_file})
if(i EQUAL 0)
message(STATUS "Loading ${dts_file} as base")
message(STATUS "Found BOARD.dts: ${dts_file}")
else()
message(STATUS "Overlaying ${dts_file}")
message(STATUS "Found devicetree overlay: ${dts_file}")
endif()
math(EXPR i "${i}+1")
@ -190,25 +196,49 @@ if(SUPPORTS_DTS)
endif(DTC)
#
# Run gen_legacy_defines.py to create a .conf file and a header file
# Run gen_defines.py to create a header file and zephyr.dts.
#
set(CMD_NEW_EXTRACT ${PYTHON_EXECUTABLE} ${ZEPHYR_BASE}/scripts/dts/gen_legacy_defines.py
set(CMD_EXTRACT ${PYTHON_EXECUTABLE} ${ZEPHYR_BASE}/scripts/dts/gen_defines.py
--dts ${BOARD}.dts.pre.tmp
--dtc-flags '${EXTRA_DTC_FLAGS}'
--bindings-dirs ${DTS_ROOT_BINDINGS}
--conf-out ${DEVICETREE_CONF}
--header-out ${DEVICETREE_UNFIXED_H}
--dts-out ${PROJECT_BINARY_DIR}/zephyr.dts # As a debugging aid
--dts-out ${ZEPHYR_DTS} # As a debugging aid
)
#
# Run gen_legacy_defines.py to create a header file with legacy contents
# and a .conf file.
#
set(CMD_LEGACY_EXTRACT ${PYTHON_EXECUTABLE} ${ZEPHYR_BASE}/scripts/dts/gen_legacy_defines.py
--dts ${BOARD}.dts.pre.tmp
--dtc-flags '${EXTRA_DTC_FLAGS}'
--bindings-dirs ${DTS_ROOT_BINDINGS}
--header-out ${DEVICETREE_UNFIXED_LEGACY_H}
--conf-out ${DEVICETREE_CONF}
)
execute_process(
COMMAND ${CMD_NEW_EXTRACT}
COMMAND ${CMD_EXTRACT}
WORKING_DIRECTORY ${PROJECT_BINARY_DIR}
RESULT_VARIABLE ret
)
if(NOT "${ret}" STREQUAL "0")
message(FATAL_ERROR "new extractor failed with return code: ${ret}")
message(FATAL_ERROR "gen_defines.py failed with return code: ${ret}")
else()
message(STATUS "Generated zephyr.dts: ${ZEPHYR_DTS}")
message(STATUS "Generated devicetree_unfixed.h: ${DEVICETREE_UNFIXED_H}")
endif()
execute_process(
COMMAND ${CMD_LEGACY_EXTRACT}
WORKING_DIRECTORY ${PROJECT_BINARY_DIR}
RESULT_VARIABLE ret
)
if(NOT "${ret}" STREQUAL "0")
message(FATAL_ERROR "gen_legacy_defines.py failed with return code: ${ret}")
endif()
# A file that used to be generated by 'dtc'. zephyr.dts is the new
@ -218,4 +248,5 @@ if(SUPPORTS_DTS)
else()
file(WRITE ${DEVICETREE_UNFIXED_H} "/* WARNING. THIS FILE IS AUTO-GENERATED. DO NOT MODIFY! */")
file(WRITE ${DEVICETREE_UNFIXED_LEGACY_H} "/* WARNING. THIS FILE IS AUTO-GENERATED. DO NOT MODIFY! */")
endif(SUPPORTS_DTS)

View file

@ -9,6 +9,7 @@
#define DEVICETREE_H
#include <devicetree_unfixed.h>
#include <devicetree_legacy_unfixed.h>
#include <devicetree_fixups.h>
#endif /* DEVICETREE_H */

628
scripts/dts/gen_defines.py Executable file
View file

@ -0,0 +1,628 @@
#!/usr/bin/env python3
# Copyright (c) 2019 - 2020 Nordic Semiconductor ASA
# Copyright (c) 2019 Linaro Limited
# SPDX-License-Identifier: BSD-3-Clause
# This script uses edtlib to generate a header file from a devicetree
# (.dts) file. Information from binding files in YAML format is used
# as well.
#
# Bindings are files that describe devicetree nodes. Devicetree nodes are
# usually mapped to bindings via their 'compatible = "..."' property.
#
# See Zephyr's Devicetree user guide for details.
#
# Note: Do not access private (_-prefixed) identifiers from edtlib here (and
# also note that edtlib is not meant to expose the dtlib API directly).
# Instead, think of what API you need, and add it as a public documented API in
# edtlib. This will keep this script simple.
import argparse
import os
import pathlib
import re
import sys
import edtlib
def main():
global header_file
args = parse_args()
try:
edt = edtlib.EDT(args.dts, args.bindings_dirs,
# Suppress this warning if it's suppressed in dtc
warn_reg_unit_address_mismatch=
"-Wno-simple_bus_reg" not in args.dtc_flags)
except edtlib.EDTError as e:
sys.exit(f"devicetree error: {e}")
# Save merged DTS source, as a debugging aid
with open(args.dts_out, "w", encoding="utf-8") as f:
print(edt.dts_source, file=f)
with open(args.header_out, "w", encoding="utf-8") as header_file:
write_top_comment(edt)
for node in sorted(edt.nodes, key=lambda node: node.dep_ordinal):
node.z_path_id = "N_" + "_".join(
f"S_{str2ident(name)}" for name in node.path[1:].split("/"))
write_node_comment(node)
if not node.enabled:
out_comment("No macros: node is disabled")
continue
if not node.matching_compat:
out_comment("No macros: node has no matching binding")
continue
write_idents_and_existence(node)
write_bus(node)
write_special_props(node)
write_vanilla_props(node)
write_chosen(edt)
write_inst_num(edt)
def parse_args():
# Returns parsed command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--dts", required=True, help="DTS file")
parser.add_argument("--dtc-flags",
help="'dtc' devicetree compiler flags, some of which "
"might be respected here")
parser.add_argument("--bindings-dirs", nargs='+', required=True,
help="directory with bindings in YAML format, "
"we allow multiple")
parser.add_argument("--header-out", required=True,
help="path to write header to")
parser.add_argument("--dts-out", required=True,
help="path to write merged DTS source code to (e.g. "
"as a debugging aid)")
return parser.parse_args()
def write_top_comment(edt):
# Writes an overview comment with misc. info at the top of the header and
# configuration file
s = f"""\
Generated by gen_defines.py
DTS input file:
{edt.dts_path}
Directories with bindings:
{", ".join(map(relativize, edt.bindings_dirs))}
Nodes in dependency order (ordinal and path):
"""
for scc in edt.scc_order():
if len(scc) > 1:
err("cycle in devicetree involving "
+ ", ".join(node.path for node in scc))
s += f" {scc[0].dep_ordinal:<3} {scc[0].path}\n"
s += """
Definitions derived from these nodes in dependency order are next,
followed by /chosen nodes.
"""
out_comment(s, blank_before=False)
def write_node_comment(node):
# Writes a comment describing 'node' to the header and configuration file
s = f"""\
Devicetree node:
{node.path}
"""
if node.matching_compat:
s += f"""
Binding (compatible = {node.matching_compat}):
{relativize(node.binding_path)}
"""
s += f"""
Node's path identifier in this file: {node.z_path_id}
"""
s += f"\nDependency Ordinal: {node.dep_ordinal}\n"
if node.depends_on:
s += "\nRequires:\n"
for dep in node.depends_on:
s += f" {dep.dep_ordinal:<3} {dep.path}\n"
if node.required_by:
s += "\nSupports:\n"
for req in node.required_by:
s += f" {req.dep_ordinal:<3} {req.path}\n"
if node.description:
# Indent description by two spaces
s += "\nDescription:\n" + \
"\n".join(" " + line for line in
node.description.splitlines()) + \
"\n"
out_comment(s)
def relativize(path):
# If 'path' is within $ZEPHYR_BASE, returns it relative to $ZEPHYR_BASE,
# with a "$ZEPHYR_BASE/..." hint at the start of the string. Otherwise,
# returns 'path' unchanged.
zbase = os.getenv("ZEPHYR_BASE")
if zbase is None:
return path
try:
return str("$ZEPHYR_BASE" / pathlib.Path(path).relative_to(zbase))
except ValueError:
# Not within ZEPHYR_BASE
return path
def write_idents_and_existence(node):
# Writes macros related to the node's aliases, labels, etc.,
# as well as existence flags.
# Aliases
idents = [f"N_ALIAS_{str2ident(alias)}" for alias in node.aliases]
# Instances
for compat in node.compats:
if not node.enabled:
continue
instance_no = node.edt.compat2enabled[compat].index(node)
idents.append(f"N_INST_{instance_no}_{str2ident(compat)}")
# Node labels
idents.extend(f"N_NODELABEL_{str2ident(label)}" for label in node.labels)
out_comment("Existence and alternate IDs:")
out_dt_define(node.z_path_id + "_EXISTS", 1)
# Only determine maxlen if we have any idents
if idents:
maxlen = max(len("DT_" + ident) for ident in idents)
for ident in idents:
out_dt_define(ident, "DT_" + node.z_path_id, width=maxlen)
def write_bus(node):
# Macros about the node's bus controller, if there is one
bus = node.bus_node
if not bus:
return
if not bus.label:
err(f"missing 'label' property on bus node {bus!r}")
out_comment(f"Bus info (controller: '{bus.path}', type: '{node.on_bus}')")
out_dt_define(f"{node.z_path_id}_BUS_{str2ident(node.on_bus)}", 1)
out_dt_define(f"{node.z_path_id}_BUS", f"DT_{bus.z_path_id}")
def write_special_props(node):
# Writes required macros for special case properties, when the
# data cannot otherwise be obtained from write_vanilla_props()
# results
out_comment("Special property macros:")
# Macros that are special to the devicetree specification
write_regs(node)
write_interrupts(node)
write_compatibles(node)
def write_regs(node):
# reg property: edtlib knows the right #address-cells and
# #size-cells, and can therefore pack the register base addresses
# and sizes correctly
idx_vals = []
name_vals = []
path_id = node.z_path_id
if node.regs is not None:
idx_vals.append((f"{path_id}_REG_NUM", len(node.regs)))
for i, reg in enumerate(node.regs):
if reg.addr is not None:
idx_macro = f"{path_id}_REG_IDX_{i}_VAL_ADDRESS"
idx_vals.append((idx_macro,
f"{reg.addr} /* {hex(reg.addr)} */"))
if reg.name:
name_macro = f"{path_id}_REG_NAME_{reg.name}_VAL_ADDRESS"
name_vals.append((name_macro, f"DT_{idx_macro}"))
if reg.size is not None:
idx_macro = f"{path_id}_REG_IDX_{i}_VAL_SIZE"
idx_vals.append((idx_macro,
f"{reg.size} /* {hex(reg.size)} */"))
if reg.name:
name_macro = f"{path_id}_REG_NAME_{reg.name}_VAL_SIZE"
name_vals.append((name_macro, f"DT_{idx_macro}"))
for macro, val in idx_vals:
out_dt_define(macro, val)
for macro, val in name_vals:
out_dt_define(macro, val)
def write_interrupts(node):
# interrupts property: we have some hard-coded logic for interrupt
# mapping here.
#
# TODO: can we push map_arm_gic_irq_type() and
# encode_zephyr_multi_level_irq() out of Python and into C with
# macro magic in devicetree.h?
def map_arm_gic_irq_type(irq, irq_num):
# Maps ARM GIC IRQ (type)+(index) combo to linear IRQ number
if "type" not in irq.data:
err(f"Expected binding for {irq.controller!r} to have 'type' in "
"interrupt-cells")
irq_type = irq.data["type"]
if irq_type == 0: # GIC_SPI
return irq_num + 32
if irq_type == 1: # GIC_PPI
return irq_num + 16
err(f"Invalid interrupt type specified for {irq!r}")
def encode_zephyr_multi_level_irq(irq, irq_num):
# See doc/reference/kernel/other/interrupts.rst for details
# on how this encoding works
irq_ctrl = irq.controller
# Look for interrupt controller parent until we have none
while irq_ctrl.interrupts:
irq_num = (irq_num + 1) << 8
if "irq" not in irq_ctrl.interrupts[0].data:
err(f"Expected binding for {irq_ctrl!r} to have 'irq' in "
"interrupt-cells")
irq_num |= irq_ctrl.interrupts[0].data["irq"]
irq_ctrl = irq_ctrl.interrupts[0].controller
return irq_num
idx_vals = []
name_vals = []
path_id = node.z_path_id
if node.interrupts is not None:
idx_vals.append((f"{path_id}_IRQ_NUM", len(node.interrupts)))
for i, irq in enumerate(node.interrupts):
for cell_name, cell_value in irq.data.items():
name = str2ident(cell_name)
if cell_name == "irq":
if "arm,gic" in irq.controller.compats:
cell_value = map_arm_gic_irq_type(irq, cell_value)
cell_value = encode_zephyr_multi_level_irq(irq, cell_value)
idx_macro = f"{path_id}_IRQ_IDX_{i}_VAL_{name}"
idx_vals.append((idx_macro, cell_value))
idx_vals.append((idx_macro + "_EXISTS", 1))
if irq.name:
name_macro = \
f"{path_id}_IRQ_NAME_{str2ident(irq.name)}_VAL_{name}"
name_vals.append((name_macro, f"DT_{idx_macro}"))
name_vals.append((name_macro + "_EXISTS", 1))
for macro, val in idx_vals:
out_dt_define(macro, val)
for macro, val in name_vals:
out_dt_define(macro, val)
def write_compatibles(node):
# Writes a macro for each of the node's compatibles. We don't care
# about whether edtlib / Zephyr's binding language recognizes
# them. The compatibles the node provides are what is important.
for compat in node.compats:
out_dt_define(
f"{node.z_path_id}_COMPAT_MATCHES_{str2ident(compat)}", 1)
def write_vanilla_props(node):
# Writes macros for any and all properties defined in the
# "properties" section of the binding for the node.
#
# This does generate macros for special properties as well, like
# regs, etc. Just let that be rather than bothering to add
# never-ending amounts of special case code here to skip special
# properties. This function's macros can't conflict with
# write_special_props() macros, because they're in different
# namespaces. Special cases aren't special enough to break the rules.
macro2val = {}
for prop_name, prop in node.props.items():
macro = f"{node.z_path_id}_P_{str2ident(prop_name)}"
val = prop2value(prop)
if val is not None:
# DT_N_<node-id>_P_<prop-id>
macro2val[macro] = val
if prop.enum_index is not None:
# DT_N_<node-id>_P_<prop-id>_ENUM_IDX
macro2val[macro + "_ENUM_IDX"] = prop.enum_index
if "phandle" in prop.type:
macro2val.update(phandle_macros(prop, macro))
elif "array" in prop.type:
# DT_N_<node-id>_P_<prop-id>_IDX_<i>
for i, subval in enumerate(prop.val):
if isinstance(subval, str):
macro2val[macro + f"_IDX_{i}"] = quote_str(subval)
else:
macro2val[macro + f"_IDX_{i}"] = subval
plen = prop_len(prop)
if plen is not None:
# DT_N_<node-id>_P_<prop-id>_LEN
macro2val[macro + "_LEN"] = plen
macro2val[f"{macro}_EXISTS"] = 1
if macro2val:
out_comment("Generic property macros:")
for macro, val in macro2val.items():
out_dt_define(macro, val)
else:
out_comment("(No generic property macros)")
def prop2value(prop):
# Gets the macro value for property 'prop', if there is
# a single well-defined C rvalue that it can be represented as.
# Returns None if there isn't one.
if prop.type == "string":
return quote_str(prop.val)
if prop.type == "int":
return prop.val
if prop.type == "boolean":
return 1 if prop.val else 0
if prop.type in ["array", "uint8-array"]:
return list2init(f"{val} /* {hex(val)} */" for val in prop.val)
if prop.type == "string-array":
return list2init(quote_str(val) for val in prop.val)
# phandle, phandles, phandle-array, path, compound: nothing
return None
def prop_len(prop):
# Returns the property's length if and only if we should generate
# a _LEN macro for the property. Otherwise, returns None.
#
# This deliberately excludes reg and interrupts.
# While they have array type, their lengths as arrays are
# basically nonsense semantically due to #address-cells and
# #size-cells for "reg" and #interrupt-cells for "interrupts".
#
# We have special purpose macros for the number of register blocks
# / interrupt specifiers. Excluding them from this list means
# DT_PROP_LEN(node_id, ...) fails fast at the devicetree.h layer
# with a build error. This forces users to switch to the right
# macros.
if prop.type == "phandle":
return 1
if (prop.type in ["array", "uint8-array", "string-array",
"phandles", "phandle-array"] and
prop.name not in ["reg", "interrupts"]):
return len(prop.val)
return None
def phandle_macros(prop, macro):
# Returns a dict of macros for phandle or phandles property 'prop'.
#
# The 'macro' argument is the N_<node-id>_P_<prop-id> bit.
#
# These are currently special because we can't serialize their
# values without using label properties, which we're trying to get
# away from needing in Zephyr. (Label properties are great for
# humans, but have drawbacks for code size and boot time.)
#
# The names look a bit weird to make it easier for devicetree.h
# to use the same macros for phandle, phandles, and phandle-array.
ret = {}
if prop.type == "phandle":
# A phandle is treated as a phandles with fixed length 1.
ret[f"{macro}_IDX_0_PH"] = f"DT_{prop.val.z_path_id}"
elif prop.type == "phandles":
for i, node in enumerate(prop.val):
ret[f"{macro}_IDX_{i}_PH"] = f"DT_{node.z_path_id}"
elif prop.type == "phandle-array":
for i, entry in enumerate(prop.val):
ret.update(controller_and_data_macros(entry, i, macro))
return ret
def controller_and_data_macros(entry, i, macro):
# Helper procedure used by phandle_macros().
#
# Its purpose is to write the "controller" (i.e. label property of
# the phandle's node) and associated data macros for a
# ControllerAndData.
ret = {}
data = entry.data
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_PH
ret[f"{macro}_IDX_{i}_PH"] = f"DT_{entry.controller.z_path_id}"
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_VAL_<VAL>
for cell, val in data.items():
ret[f"{macro}_IDX_{i}_VAL_{str2ident(cell)}"] = val
ret[f"{macro}_IDX_{i}_VAL_{str2ident(cell)}_EXISTS"] = 1
if not entry.name:
return ret
name = str2ident(entry.name)
# DT_N_<node-id>_P_<prop-id>_IDX_<i>_NAME
ret[f"{macro}_IDX_{i}_NAME"] = quote_str(entry.name)
# DT_N_<node-id>_P_<prop-id>_NAME_<NAME>_PH
ret[f"{macro}_NAME_{name}_PH"] = f"DT_{entry.controller.z_path_id}"
# DT_N_<node-id>_P_<prop-id>_NAME_<NAME>_VAL_<VAL>
for cell, val in data.items():
cell_ident = str2ident(cell)
ret[f"{macro}_NAME_{name}_VAL_{cell_ident}"] = \
f"DT_{macro}_IDX_{i}_VAL_{cell_ident}"
ret[f"{macro}_NAME_{name}_VAL_{cell_ident}_EXISTS"] = 1
return ret
def write_chosen(edt):
# Tree-wide information such as chosen nodes is printed here.
out_comment("Chosen nodes\n")
chosen = {}
for name, node in edt.chosen_nodes.items():
chosen[f"DT_CHOSEN_{str2ident(name)}"] = f"DT_{node.z_path_id}"
chosen[f"DT_CHOSEN_{str2ident(name)}_EXISTS"] = 1
max_len = max(map(len, chosen))
for macro, value in chosen.items():
out_define(macro, value, width=max_len)
def write_inst_num(edt):
# Tree-wide information such as number of instances is printed here.
out_comment("Number of instances\n")
compat_list = []
# Walk the nodes to build which compats we need to generate for
for node in sorted(edt.nodes, key=lambda node: node.dep_ordinal):
if not node.enabled:
continue
if not node.matching_compat:
continue
for compat in node.compats:
if compat not in compat_list:
compat_list.append(compat)
for compat in compat_list:
num_inst = len(edt.compat2enabled[compat])
out_define(f"DT_N_INST_{str2ident(compat)}_NUM", num_inst)
def str2ident(s):
# Converts 's' to a form suitable for (part of) an identifier
return re.sub('[-,.@/+]', '_', s.lower())
def list2init(l):
# Converts 'l', a Python list (or iterable), to a C array initializer
return "{" + ", ".join(l) + "}"
def out_dt_define(macro, val, width=None, deprecation_msg=None):
# Writes "#define DT_<macro> <val>" to the header file
#
# The macro will be left-justified to 'width' characters if that
# is specified, and the value will follow immediately after in
# that case. Otherwise, this function decides how to add
# whitespace between 'macro' and 'val'.
#
# If a 'deprecation_msg' string is passed, the generated identifiers will
# generate a warning if used, via __WARN(<deprecation_msg>)).
#
# Returns the full generated macro for 'macro', with leading "DT_".
ret = "DT_" + macro
out_define(ret, val, width=width, deprecation_msg=deprecation_msg)
return ret
def out_define(macro, val, width=None, deprecation_msg=None):
# Helper for out_dt_define(). Outputs "#define <macro> <val>",
# adds a deprecation message if given, and allocates whitespace
# unless told not to.
warn = fr' __WARN("{deprecation_msg}")' if deprecation_msg else ""
if width:
s = f"#define {macro.ljust(width)}{warn} {val}"
else:
s = f"#define {macro}{warn} {val}"
print(s, file=header_file)
def out_comment(s, blank_before=True):
# Writes 's' as a comment to the header and configuration file. 's' is
# allowed to have multiple lines. blank_before=True adds a blank line
# before the comment.
if blank_before:
print(file=header_file)
if "\n" in s:
# Format multi-line comments like
#
# /*
# * first line
# * second line
# *
# * empty line before this line
# */
res = ["/*"]
for line in s.splitlines():
# Avoid an extra space after '*' for empty lines. They turn red in
# Vim if space error checking is on, which is annoying.
res.append(" *" if not line.strip() else " * " + line)
res.append(" */")
print("\n".join(res), file=header_file)
else:
# Format single-line comments like
#
# /* foo bar */
print("/* " + s + " */", file=header_file)
def escape(s):
# Backslash-escapes any double quotes and backslashes in 's'
# \ must be escaped before " to avoid double escaping
return s.replace("\\", "\\\\").replace('"', '\\"')
def quote_str(s):
# Puts quotes around 's' and escapes any double quotes and
# backslashes within it
return f'"{escape(s)}"'
def err(s):
raise Exception(s)
if __name__ == "__main__":
main()

View file

@ -4,19 +4,12 @@
# Copyright (c) 2019 Linaro Limited
# SPDX-License-Identifier: BSD-3-Clause
# This script uses edtlib to generate a header file and a .conf file (both
# containing the same values) from a devicetree (.dts) file. Information from
# binding files in YAML format is used as well.
# This script is similar to gen_defines.py, but is for the legacy
# macro syntax used in e.g. Zephyr 2.2.
#
# Bindings are files that describe devicetree nodes. Devicetree nodes are
# usually mapped to bindings via their 'compatible = "..."' property.
#
# See the docstring/comments at the top of edtlib.py for more information.
#
# Note: Do not access private (_-prefixed) identifiers from edtlib here (and
# also note that edtlib is not meant to expose the dtlib API directly).
# Instead, think of what API you need, and add it as a public documented API in
# edtlib. This will keep this script simple.
# It should be considered frozen code. New macro-related functionality
# should be done by modifying the macro namespaces managed by
# gen_defines.py.
import argparse
import os
@ -25,7 +18,6 @@ import sys
import edtlib
def main():
global conf_file
global header_file
@ -41,10 +33,6 @@ def main():
except edtlib.EDTError as e:
sys.exit(f"devicetree error: {e}")
# Save merged DTS source, as a debugging aid
with open(args.dts_out, "w", encoding="utf-8") as f:
print(edt.dts_source, file=f)
conf_file = open(args.conf_out, "w", encoding="utf-8")
header_file = open(args.header_out, "w", encoding="utf-8")
flash_area_num = 0
@ -84,8 +72,6 @@ def main():
conf_file.close()
header_file.close()
print(f"Devicetree header saved to '{args.header_out}'")
def parse_args():
# Returns parsed command-line arguments
@ -102,9 +88,6 @@ def parse_args():
help="path to write header to")
parser.add_argument("--conf-out", required=True,
help="path to write configuration file to")
parser.add_argument("--dts-out", required=True,
help="path to write merged DTS source code to (e.g. "
"as a debugging aid)")
return parser.parse_args()
@ -114,7 +97,7 @@ def write_top_comment(edt):
# configuration file
s = f"""\
Generated by gen_defines.py
Generated by gen_legacy_defines.py
DTS input file:
{edt.dts_path}