drivers: esp32: uart: use hal functions

In order to have Espressif SoCs working with
the same uart drivers, all low level functions
are now replaced to hal_espressif HAL calls.

This also changes pinmux, gpio and uart
init order to meet its dependencies.

Signed-off-by: Sylvio Alves <sylvio.alves@espressif.com>
This commit is contained in:
Sylvio Alves 2021-10-28 01:16:33 -03:00 committed by Christopher Friedt
commit d5aa5c2a77
18 changed files with 250 additions and 377 deletions

View file

@ -342,8 +342,6 @@
/drivers/serial/*rcar* @aaillet
/drivers/serial/Kconfig.test @str4t0m
/drivers/serial/serial_test.c @str4t0m
/drivers/serial/*esp32c3* @uLipe
/drivers/serial/*esp32s2* @glaubermaroto
/drivers/serial/Kconfig.xen @lorc @firscity
/drivers/serial/uart_hvc_xen.c @lorc @firscity
/drivers/disk/ @jfischer-no

View file

@ -35,6 +35,8 @@
&uart0 {
status = "okay";
current-speed = <115200>;
tx-pin = <2>;
rx-pin = <3>;
};
&trng0 {

View file

@ -13,3 +13,4 @@ CONFIG_PINMUX=y
CONFIG_PINMUX_ESP32=y
CONFIG_GPIO=y
CONFIG_GPIO_ESP32=y
CONFIG_CLOCK_CONTROL=y

View file

@ -12,7 +12,6 @@ CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC=240000000
CONFIG_CONSOLE=y
CONFIG_SERIAL=y
CONFIG_UART_CONSOLE=y
CONFIG_UART_ESP32=y
CONFIG_XTENSA_USE_CORE_CRT1=n

View file

@ -27,6 +27,8 @@
&uart0 {
status = "okay";
current-speed = <115200>;
rx-pin = <5>;
tx-pin = <6>;
};
&gpio0 {

View file

@ -417,7 +417,7 @@ static const struct gpio_driver_api gpio_esp32_driver_api = {
NULL, \
&gpio_data_##_id, \
&gpio_config_##_id, \
POST_KERNEL, \
PRE_KERNEL_2, \
CONFIG_KERNEL_INIT_PRIORITY_DEVICE, \
&gpio_esp32_driver_api);

View file

@ -11,6 +11,7 @@
#include <soc/soc.h>
#include <hal/gpio_types.h>
#include <hal/gpio_ll.h>
#include <soc.h>
#include <errno.h>
#include <drivers/pinmux.h>
@ -66,10 +67,13 @@ static int pinmux_input(const struct device *dev, uint32_t pin, uint8_t func)
switch (func) {
case PINMUX_INPUT_ENABLED:
gpio_ll_output_disable(&GPIO, pin);
gpio_ll_input_enable(&GPIO, pin);
break;
case PINMUX_OUTPUT_ENABLED:
gpio_ll_input_disable(&GPIO, pin);
gpio_ll_output_enable(&GPIO, pin);
esp_rom_gpio_matrix_out(pin, SIG_GPIO_OUT_IDX, false, false);
break;
default:
return -EINVAL;
@ -97,5 +101,5 @@ static int pinmux_initialize(const struct device *dev)
*/
DEVICE_DT_INST_DEFINE(0, &pinmux_initialize,
NULL, NULL, NULL,
PRE_KERNEL_2, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
PRE_KERNEL_1, CONFIG_KERNEL_INIT_PRIORITY_DEFAULT,
&api_funcs);

View file

@ -8,8 +8,6 @@ zephyr_library_sources_ifdef(CONFIG_UART_CC13XX_CC26XX uart_cc13xx_cc26xx.c)
zephyr_library_sources_ifdef(CONFIG_UART_CC32XX uart_cc32xx.c)
zephyr_library_sources_ifdef(CONFIG_UART_CMSDK_APB uart_cmsdk_apb.c)
zephyr_library_sources_ifdef(CONFIG_UART_ESP32 uart_esp32.c)
zephyr_library_sources_ifdef(CONFIG_UART_ROM_ESP32C3 uart_rom_esp32c3.c)
zephyr_library_sources_ifdef(CONFIG_UART_ROM_ESP32S2 uart_rom_esp32s2.c)
zephyr_library_sources_ifdef(CONFIG_UART_SIFIVE uart_sifive.c)
zephyr_library_sources_ifdef(CONFIG_UART_GECKO uart_gecko.c)
zephyr_library_sources_ifdef(CONFIG_LEUART_GECKO leuart_gecko.c)

View file

@ -127,10 +127,6 @@ source "drivers/serial/Kconfig.sifive"
source "drivers/serial/Kconfig.esp32"
source "drivers/serial/Kconfig.esp32c3_rom"
source "drivers/serial/Kconfig.esp32s2_rom"
source "drivers/serial/Kconfig.gecko"
source "drivers/serial/Kconfig.leuart_gecko"

View file

@ -11,4 +11,4 @@ config UART_ESP32
select GPIO_ESP32
depends on SOC_ESP32 || SOC_ESP32S2 || SOC_ESP32C3
help
Enable the ESP32 UART using ROM routines.
Enable the ESP32 UART.

View file

@ -1,14 +0,0 @@
# Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd.
# SPDX-License-Identifier: Apache-2.0
DT_COMPAT_ESP32_UART := espressif,esp32-uart
DT_COMPAT_ESP32_UART_ROM := espressif,esp32c3-uart
config UART_ROM_ESP32C3
bool "ESP32C3 ROM UART driver"
default ($(dt_compat_enabled,$(DT_COMPAT_ESP32_UART_ROM))\
&& !$(dt_compat_enabled,$(DT_COMPAT_ESP32_UART)))
select SERIAL_HAS_DRIVER
depends on SOC_ESP32C3
help
Enable the ESP32C3 UART using ROM routines.

View file

@ -1,15 +0,0 @@
# Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd.
# SPDX-License-Identifier: Apache-2.0
DT_COMPAT_ESP32_UART := espressif,esp32-uart
DT_COMPAT_ESP32_UART_ROM := espressif,esp32s2-uart
config UART_ROM_ESP32S2
bool "ESP32S2 ROM UART driver"
default ($(dt_compat_enabled,$(DT_COMPAT_ESP32_UART_ROM))\
&& !$(dt_compat_enabled,$(DT_COMPAT_ESP32_UART)))
select SERIAL_HAS_DRIVER
depends on SOC_ESP32S2
help
Enable the ESP32S2 UART using ROM routines.

View file

@ -11,18 +11,22 @@
#ifdef CONFIG_SOC_ESP32
#include <esp32/rom/ets_sys.h>
#include <esp32/rom/gpio.h>
#include <soc/dport_reg.h>
#elif defined(CONFIG_SOC_ESP32S2)
#include <esp32s2/rom/ets_sys.h>
#include <esp32s2/rom/gpio.h>
#include <soc/dport_reg.h>
#elif defined(CONFIG_SOC_ESP32C3)
#include <esp32c3/rom/ets_sys.h>
#include <esp32c3/rom/gpio.h>
#endif
#include <soc/uart_struct.h>
#include <soc/dport_access.h>
#include "stubs.h"
#include <hal/uart_ll.h>
#include <hal/uart_hal.h>
#include <hal/uart_types.h>
#include <drivers/gpio.h>
#include <soc/gpio_sig_map.h>
#include <soc/uart_reg.h>
@ -46,25 +50,20 @@
#define ISR_HANDLER intr_handler_t
#endif
struct uart_esp32_pin {
const char *gpio_name;
int signal;
int pin;
};
struct uart_esp32_config {
struct uart_device_config dev_conf;
uart_hal_context_t hal;
const struct device *clock_dev;
const struct {
int tx_out;
int rx_in;
int rts_out;
int cts_in;
} signals;
const struct {
int tx;
int rx;
int rts;
int cts;
} pins;
const struct uart_esp32_pin tx;
const struct uart_esp32_pin rx;
const struct uart_esp32_pin rts;
const struct uart_esp32_pin cts;
const clock_control_subsys_t clock_subsys;
@ -82,11 +81,9 @@ struct uart_esp32_data {
};
#define DEV_CFG(dev) \
((const struct uart_esp32_config *const)(dev)->config)
((struct uart_esp32_config *const)(dev)->config)
#define DEV_DATA(dev) \
((struct uart_esp32_data *)(dev)->data)
#define DEV_BASE(dev) \
((volatile uart_dev_t *)(DEV_CFG(dev))->dev_conf.base)
#define UART_FIFO_LIMIT (UART_LL_FIFO_DEF_LEN)
#define UART_TX_FIFO_THRESH 0x1
@ -99,30 +96,33 @@ static void uart_esp32_isr(void *arg);
static int uart_esp32_poll_in(const struct device *dev, unsigned char *p_char)
{
if (DEV_BASE(dev)->status.rxfifo_cnt == 0) {
int inout_rd_len = 1;
if (uart_hal_get_rxfifo_len(&DEV_CFG(dev)->hal) == 0) {
return -1;
}
uart_ll_read_rxfifo(DEV_BASE(dev), p_char, 1);
return 0;
uart_hal_read_rxfifo(&DEV_CFG(dev)->hal, p_char, &inout_rd_len);
return inout_rd_len;
}
static IRAM_ATTR void uart_esp32_poll_out(const struct device *dev,
unsigned char c)
static void uart_esp32_poll_out(const struct device *dev, unsigned char c)
{
uint32_t written;
/* Wait for space in FIFO */
while ((UART_FIFO_LIMIT - DEV_BASE(dev)->status.txfifo_cnt) <= 0) {
while (uart_hal_get_txfifo_len(&DEV_CFG(dev)->hal) == 0) {
; /* Wait */
}
/* Send a character */
uart_ll_write_txfifo(DEV_BASE(dev), &c, 1);
uart_hal_write_txfifo(&DEV_CFG(dev)->hal, &c, 1, &written);
}
static int uart_esp32_err_check(const struct device *dev)
{
uint32_t err = DEV_BASE(dev)->int_st.parity_err
| DEV_BASE(dev)->int_st.frm_err;
uint32_t mask = uart_hal_get_intsts_mask(&DEV_CFG(dev)->hal);
uint32_t err = mask & (UART_INTR_PARITY_ERR | UART_INTR_FRAM_ERR);
return err;
}
@ -131,101 +131,153 @@ static int uart_esp32_err_check(const struct device *dev)
static int uart_esp32_config_get(const struct device *dev,
struct uart_config *cfg)
{
struct uart_esp32_data *data = DEV_DATA(dev);
uart_parity_t parity;
uart_stop_bits_t stop_bit;
uart_word_length_t data_bit;
uart_hw_flowcontrol_t hw_flow;
cfg->baudrate = data->uart_config.baudrate;
uart_hal_get_baudrate(&DEV_CFG(dev)->hal, &cfg->baudrate);
if (DEV_BASE(dev)->conf0.parity_en) {
cfg->parity = DEV_BASE(dev)->conf0.parity;
} else {
uart_hal_get_parity(&DEV_CFG(dev)->hal, &parity);
switch (parity) {
case UART_PARITY_DISABLE:
cfg->parity = UART_CFG_PARITY_NONE;
break;
case UART_PARITY_EVEN:
cfg->parity = UART_CFG_PARITY_EVEN;
break;
case UART_PARITY_ODD:
cfg->parity = UART_CFG_PARITY_ODD;
break;
default:
return -ENOTSUP;
}
cfg->stop_bits = DEV_BASE(dev)->conf0.stop_bit_num;
cfg->data_bits = DEV_BASE(dev)->conf0.bit_num;
uart_hal_get_stop_bits(&DEV_CFG(dev)->hal, &stop_bit);
switch (stop_bit) {
case UART_STOP_BITS_1:
cfg->stop_bits = UART_CFG_STOP_BITS_1;
break;
case UART_STOP_BITS_1_5:
cfg->stop_bits = UART_CFG_STOP_BITS_1_5;
break;
case UART_STOP_BITS_2:
cfg->stop_bits = UART_CFG_STOP_BITS_2;
break;
default:
return -ENOTSUP;
}
if (DEV_BASE(dev)->conf0.tx_flow_en) {
uart_hal_get_data_bit_num(&DEV_CFG(dev)->hal, &data_bit);
switch (data_bit) {
case UART_DATA_5_BITS:
cfg->data_bits = UART_CFG_DATA_BITS_5;
break;
case UART_DATA_6_BITS:
cfg->data_bits = UART_CFG_DATA_BITS_6;
break;
case UART_DATA_7_BITS:
cfg->data_bits = UART_CFG_DATA_BITS_7;
break;
case UART_DATA_8_BITS:
cfg->data_bits = UART_CFG_DATA_BITS_8;
break;
default:
return -ENOTSUP;
}
uart_hal_get_hw_flow_ctrl(&DEV_CFG(dev)->hal, &hw_flow);
switch (hw_flow) {
case UART_HW_FLOWCTRL_DISABLE:
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_NONE;
break;
case UART_HW_FLOWCTRL_CTS_RTS:
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_RTS_CTS;
break;
default:
return -ENOTSUP;
}
if (DEV_BASE(dev)->conf1.rx_flow_en) {
cfg->flow_ctrl = UART_CFG_FLOW_CTRL_DTR_DSR;
}
return 0;
}
#endif /* CONFIG_UART_USE_RUNTIME_CONFIGURE */
static int uart_esp32_set_baudrate(const struct device *dev, int baudrate)
{
uart_ll_set_baudrate(DEV_BASE(dev), baudrate);
return 1;
}
static int uart_esp32_configure_pins(const struct device *dev)
static int uart_esp32_configure_pins(const struct device *dev, const struct uart_config *uart)
{
const struct uart_esp32_config *const cfg = DEV_CFG(dev);
esp_rom_gpio_matrix_out(cfg->pins.tx,
cfg->signals.tx_out,
false,
false);
do {
if (cfg->tx.gpio_name == NULL || cfg->rx.gpio_name == NULL)
break;
esp_rom_gpio_matrix_in(cfg->pins.rx,
cfg->signals.rx_in,
false);
/* TX pin config */
const struct device *tx_dev = device_get_binding(cfg->tx.gpio_name);
if (cfg->pins.cts) {
esp_rom_gpio_matrix_out(cfg->pins.cts,
cfg->signals.cts_in,
false,
false);
}
if (!tx_dev)
break;
gpio_pin_set(tx_dev, cfg->tx.pin, 1);
gpio_pin_configure(tx_dev, cfg->tx.pin, GPIO_OUTPUT);
esp_rom_gpio_matrix_out(cfg->tx.pin, cfg->tx.signal, 0, 0);
if (cfg->pins.rts) {
esp_rom_gpio_matrix_in(cfg->pins.rts,
cfg->signals.rts_out,
false);
}
/* RX pin config */
const struct device *rx_dev = device_get_binding(cfg->rx.gpio_name);
return 0;
if (!rx_dev)
break;
gpio_pin_configure(rx_dev, cfg->rx.pin, GPIO_PULL_UP | GPIO_INPUT);
esp_rom_gpio_matrix_in(cfg->rx.pin, cfg->rx.signal, 0);
if (uart->flow_ctrl == UART_CFG_FLOW_CTRL_RTS_CTS) {
if (cfg->rts.gpio_name == NULL || cfg->cts.gpio_name == NULL)
break;
/* CTS pin config */
const struct device *cts_dev = device_get_binding(cfg->cts.gpio_name);
if (!cts_dev)
break;
gpio_pin_configure(cts_dev, cfg->cts.pin, GPIO_PULL_UP | GPIO_INPUT);
esp_rom_gpio_matrix_in(cfg->cts.pin, cfg->cts.signal, 0);
/* RTS pin config */
const struct device *rts_dev = device_get_binding(cfg->rts.gpio_name);
if (!rts_dev)
break;
gpio_pin_configure(rts_dev, cfg->rts.pin, GPIO_OUTPUT);
esp_rom_gpio_matrix_out(cfg->rts.pin, cfg->rts.signal, 0, 0);
}
return 0;
} while (0);
return -EINVAL;
}
static int uart_esp32_configure(const struct device *dev,
const struct uart_config *cfg)
static int uart_esp32_configure(const struct device *dev, const struct uart_config *cfg)
{
int ret = uart_esp32_configure_pins(dev, cfg);
#ifndef CONFIG_SOC_ESP32C3
/* this register does not exist for esp32c3 uart controller */
DEV_BASE(dev)->conf0.tick_ref_always_on = 1;
#endif
if (ret < 0) {
return ret;
}
DEV_BASE(dev)->conf1.rxfifo_full_thrhd = UART_RX_FIFO_THRESH;
DEV_BASE(dev)->conf1.txfifo_empty_thrhd = UART_TX_FIFO_THRESH;
uart_esp32_configure_pins(dev);
clock_control_on(DEV_CFG(dev)->clock_dev, DEV_CFG(dev)->clock_subsys);
/*
* Reset RX Buffer by reading all received bytes
* Hardware Reset functionality can't be used with UART 1/2
*/
while (DEV_BASE(dev)->status.rxfifo_cnt != 0) {
uint8_t c;
uart_ll_read_rxfifo(DEV_BASE(dev), &c, 1);
}
uart_hal_set_sclk(&DEV_CFG(dev)->hal, UART_SCLK_APB);
uart_hal_set_rxfifo_full_thr(&DEV_CFG(dev)->hal, UART_RX_FIFO_THRESH);
uart_hal_set_txfifo_empty_thr(&DEV_CFG(dev)->hal, UART_TX_FIFO_THRESH);
uart_hal_rxfifo_rst(&DEV_CFG(dev)->hal);
switch (cfg->parity) {
case UART_CFG_PARITY_NONE:
DEV_BASE(dev)->conf0.parity = 0;
DEV_BASE(dev)->conf0.parity_en = 0;
uart_hal_set_parity(&DEV_CFG(dev)->hal, UART_PARITY_DISABLE);
break;
case UART_CFG_PARITY_EVEN:
DEV_BASE(dev)->conf0.parity_en = 1;
uart_hal_set_parity(&DEV_CFG(dev)->hal, UART_PARITY_EVEN);
break;
case UART_CFG_PARITY_ODD:
DEV_BASE(dev)->conf0.parity = 1;
DEV_BASE(dev)->conf0.parity_en = 1;
uart_hal_set_parity(&DEV_CFG(dev)->hal, UART_PARITY_ODD);
break;
default:
return -ENOTSUP;
@ -233,47 +285,56 @@ static int uart_esp32_configure(const struct device *dev,
switch (cfg->stop_bits) {
case UART_CFG_STOP_BITS_1:
uart_hal_set_stop_bits(&DEV_CFG(dev)->hal, UART_STOP_BITS_1);
break;
case UART_CFG_STOP_BITS_1_5:
uart_hal_set_stop_bits(&DEV_CFG(dev)->hal, UART_STOP_BITS_1_5);
break;
case UART_CFG_STOP_BITS_2:
DEV_BASE(dev)->conf0.stop_bit_num = cfg->stop_bits;
uart_hal_set_stop_bits(&DEV_CFG(dev)->hal, UART_STOP_BITS_2);
break;
default:
return -ENOTSUP;
}
if (cfg->data_bits <= UART_CFG_DATA_BITS_8) {
DEV_BASE(dev)->conf0.bit_num = cfg->data_bits;
} else {
switch (cfg->data_bits) {
case UART_CFG_DATA_BITS_5:
uart_hal_set_data_bit_num(&DEV_CFG(dev)->hal, UART_DATA_5_BITS);
break;
case UART_CFG_DATA_BITS_6:
uart_hal_set_data_bit_num(&DEV_CFG(dev)->hal, UART_DATA_6_BITS);
break;
case UART_CFG_DATA_BITS_7:
uart_hal_set_data_bit_num(&DEV_CFG(dev)->hal, UART_DATA_7_BITS);
break;
case UART_CFG_DATA_BITS_8:
uart_hal_set_data_bit_num(&DEV_CFG(dev)->hal, UART_DATA_8_BITS);
break;
default:
return -ENOTSUP;
}
switch (cfg->flow_ctrl) {
case UART_CFG_FLOW_CTRL_NONE:
DEV_BASE(dev)->conf0.tx_flow_en = 0;
DEV_BASE(dev)->conf1.rx_flow_en = 0;
uart_hal_set_hw_flow_ctrl(&DEV_CFG(dev)->hal, UART_HW_FLOWCTRL_DISABLE, 0);
break;
case UART_CFG_FLOW_CTRL_RTS_CTS:
DEV_BASE(dev)->conf0.tx_flow_en = 1;
DEV_BASE(dev)->conf1.rx_flow_en = 1;
uart_hal_set_hw_flow_ctrl(&DEV_CFG(dev)->hal, UART_HW_FLOWCTRL_CTS_RTS, 10);
break;
default:
return -ENOTSUP;
}
if (uart_esp32_set_baudrate(dev, cfg->baudrate)) {
DEV_DATA(dev)->uart_config.baudrate = cfg->baudrate;
} else {
return -ENOTSUP;
}
uart_hal_set_baudrate(&DEV_CFG(dev)->hal, cfg->baudrate);
uart_ll_set_rx_tout(DEV_BASE(dev), 0x16);
uart_hal_set_rx_timeout(&DEV_CFG(dev)->hal, 0x16);
return 0;
}
static int uart_esp32_init(const struct device *dev)
{
uart_esp32_configure(dev, &DEV_DATA(dev)->uart_config);
int ret = uart_esp32_configure(dev, &DEV_DATA(dev)->uart_config);
#ifdef CONFIG_UART_INTERRUPT_DRIVEN
DEV_DATA(dev)->irq_line =
@ -283,7 +344,7 @@ static int uart_esp32_init(const struct device *dev)
(void *)dev,
NULL);
#endif
return 0;
return ret;
}
@ -292,74 +353,78 @@ static int uart_esp32_init(const struct device *dev)
static int uart_esp32_fifo_fill(const struct device *dev,
const uint8_t *tx_data, int len)
{
int space = UART_FIFO_LIMIT - DEV_BASE(dev)->status.txfifo_cnt;
uint32_t written = 0;
space = MIN(len, space);
uart_ll_write_txfifo(DEV_BASE(dev), tx_data, space);
return space;
uart_hal_write_txfifo(&DEV_CFG(dev)->hal, tx_data, len, &written);
return written;
}
static int uart_esp32_fifo_read(const struct device *dev,
uint8_t *rx_data, const int len)
{
const int num_rx = DEV_BASE(dev)->status.rxfifo_cnt;
const int num_rx = uart_hal_get_rxfifo_len(&DEV_CFG(dev)->hal);
int read = MIN(len, num_rx);
uart_ll_read_rxfifo(DEV_BASE(dev), rx_data, num_rx);
return num_rx;
if (!read) {
return 0;
}
uart_hal_read_rxfifo(&DEV_CFG(dev)->hal, rx_data, &read);
return read;
}
static void uart_esp32_irq_tx_enable(const struct device *dev)
{
DEV_BASE(dev)->int_clr.txfifo_empty = 1;
DEV_BASE(dev)->int_ena.txfifo_empty = 1;
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_TXFIFO_EMPTY);
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_TXFIFO_EMPTY);
}
static void uart_esp32_irq_tx_disable(const struct device *dev)
{
DEV_BASE(dev)->int_ena.txfifo_empty = 0;
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_TXFIFO_EMPTY);
}
static int uart_esp32_irq_tx_ready(const struct device *dev)
{
return (DEV_BASE(dev)->status.txfifo_cnt < UART_FIFO_LIMIT);
return (uart_hal_get_txfifo_len(&DEV_CFG(dev)->hal) > 0);
}
static void uart_esp32_irq_rx_enable(const struct device *dev)
{
DEV_BASE(dev)->int_clr.rxfifo_full = 1;
DEV_BASE(dev)->int_clr.rxfifo_tout = 1;
DEV_BASE(dev)->int_ena.rxfifo_full = 1;
DEV_BASE(dev)->int_ena.rxfifo_tout = 1;
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_FULL);
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_TOUT);
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_FULL);
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_TOUT);
}
static void uart_esp32_irq_rx_disable(const struct device *dev)
{
DEV_BASE(dev)->int_ena.rxfifo_full = 0;
DEV_BASE(dev)->int_ena.rxfifo_tout = 0;
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_FULL);
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_TOUT);
}
static int uart_esp32_irq_tx_complete(const struct device *dev)
{
/* check if TX FIFO is empty */
return (DEV_BASE(dev)->status.txfifo_cnt == 0 ? 1 : 0);
return (uart_hal_get_txfifo_len(&DEV_CFG(dev)->hal) == UART_LL_FIFO_DEF_LEN ? 1 : 0);
}
static int uart_esp32_irq_rx_ready(const struct device *dev)
{
return (DEV_BASE(dev)->status.rxfifo_cnt > 0);
return (uart_hal_get_rxfifo_len(&DEV_CFG(dev)->hal) > 0);
}
static void uart_esp32_irq_err_enable(const struct device *dev)
{
/* enable framing, parity */
DEV_BASE(dev)->int_ena.frm_err = 1;
DEV_BASE(dev)->int_ena.parity_err = 1;
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_FRAM_ERR);
uart_hal_ena_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_PARITY_ERR);
}
static void uart_esp32_irq_err_disable(const struct device *dev)
{
DEV_BASE(dev)->int_ena.frm_err = 0;
DEV_BASE(dev)->int_ena.parity_err = 0;
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_FRAM_ERR);
uart_hal_disable_intr_mask(&DEV_CFG(dev)->hal, UART_INTR_PARITY_ERR);
}
static int uart_esp32_irq_is_pending(const struct device *dev)
@ -369,9 +434,10 @@ static int uart_esp32_irq_is_pending(const struct device *dev)
static int uart_esp32_irq_update(const struct device *dev)
{
DEV_BASE(dev)->int_clr.rxfifo_full = 1;
DEV_BASE(dev)->int_clr.rxfifo_tout = 1;
DEV_BASE(dev)->int_clr.txfifo_empty = 1;
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_FULL);
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_RXFIFO_TOUT);
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, UART_INTR_TXFIFO_EMPTY);
return 1;
}
@ -387,6 +453,12 @@ static void uart_esp32_isr(void *arg)
{
const struct device *dev = (const struct device *)arg;
struct uart_esp32_data *data = DEV_DATA(dev);
uint32_t uart_intr_status = uart_hal_get_intsts_mask(&DEV_CFG(dev)->hal);
if (uart_intr_status == 0) {
return;
}
uart_hal_clr_intsts_mask(&DEV_CFG(dev)->hal, uart_intr_status);
/* Verify if the callback has been registered */
if (data->irq_cb) {
@ -422,39 +494,49 @@ static const DRAM_ATTR struct uart_driver_api uart_esp32_api = {
#endif /* CONFIG_UART_INTERRUPT_DRIVEN */
};
#define GPIO0_NAME COND_CODE_1(DT_NODE_HAS_STATUS(DT_NODELABEL(gpio0), okay), \
(DT_LABEL(DT_INST(0, espressif_esp32_gpio))), (NULL))
#define GPIO1_NAME COND_CODE_1(DT_NODE_HAS_STATUS(DT_NODELABEL(gpio1), okay), \
(DT_LABEL(DT_INST(1, espressif_esp32_gpio))), (NULL))
#define DT_UART_ESP32_GPIO_NAME(idx, pin) ( \
DT_INST_PROP(idx, pin) < 32 ? GPIO0_NAME : GPIO1_NAME)
#define ESP32_UART_INIT(idx) \
static const DRAM_ATTR struct uart_esp32_config uart_esp32_cfg_port_##idx = { \
.dev_conf = { \
.base = \
(uint8_t *)DT_REG_ADDR(DT_NODELABEL(uart##idx)), \
.hal = { \
.dev = \
(uart_dev_t *)DT_REG_ADDR(DT_NODELABEL(uart##idx)), \
}, \
\
.clock_dev = DEVICE_DT_GET(DT_CLOCKS_CTLR(DT_NODELABEL(uart##idx))), \
\
.signals = { \
.tx_out = U##idx##TXD_OUT_IDX, \
.rx_in = U##idx##RXD_IN_IDX, \
.rts_out = U##idx##RTS_OUT_IDX, \
.cts_in = U##idx##CTS_IN_IDX, \
}, \
\
.pins = { \
.tx = DT_PROP(DT_NODELABEL(uart##idx), tx_pin), \
.rx = DT_PROP(DT_NODELABEL(uart##idx), rx_pin), \
IF_ENABLED( \
DT_PROP(DT_NODELABEL(uart##idx), hw_flow_control), \
(.rts = DT_PROP(DT_NODELABEL(uart##idx), rts_pin), \
.cts = DT_PROP(DT_NODELABEL(uart##idx), cts_pin), \
)) \
}, \
\
.tx = { \
.signal = U##idx##TXD_OUT_IDX, \
.pin = DT_INST_PROP(idx, tx_pin), \
.gpio_name = DT_UART_ESP32_GPIO_NAME(idx, tx_pin), \
}, \
.rx = { \
.signal = U##idx##RXD_IN_IDX, \
.pin = DT_INST_PROP(idx, rx_pin), \
.gpio_name = DT_UART_ESP32_GPIO_NAME(idx, rx_pin), \
}, \
IF_ENABLED(DT_PROP(DT_NODELABEL(uart##idx), hw_flow_control), ( \
.rts = { \
.signal = U##idx##RTS_OUT_IDX, \
.pin = DT_INST_PROP(idx, rts_pin), \
.gpio_name = DT_UART_ESP32_GPIO_NAME(idx, rts_pin), \
}, \
.cts = { \
.signal = U##idx##CTS_IN_IDX, \
.pin = DT_INST_PROP(idx, cts_pin), \
.gpio_name = DT_UART_ESP32_GPIO_NAME(idx, cts_pin), \
},)) \
.clock_subsys = (clock_control_subsys_t)DT_CLOCKS_CELL(DT_NODELABEL(uart##idx), offset), \
.irq_source = DT_IRQN(DT_NODELABEL(uart##idx)) \
}; \
\
static struct uart_esp32_data uart_esp32_data_##idx = { \
.uart_config = { \
.baudrate = DT_PROP(DT_NODELABEL(uart##idx), current_speed),\
.baudrate = DT_INST_PROP(idx, current_speed),\
.parity = UART_CFG_PARITY_NONE, \
.stop_bits = UART_CFG_STOP_BITS_1, \
.data_bits = UART_CFG_DATA_BITS_8, \
@ -469,7 +551,7 @@ DEVICE_DT_DEFINE(DT_NODELABEL(uart##idx), \
NULL, \
&uart_esp32_data_##idx, \
&uart_esp32_cfg_port_##idx, \
PRE_KERNEL_1, \
POST_KERNEL, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_esp32_api);

View file

@ -1,59 +0,0 @@
/*
* Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32c3_uart
/* Include esp-idf headers first to avoid redefining BIT() macro */
#include <device.h>
#include <soc.h>
#include <drivers/uart.h>
#include <drivers/clock_control.h>
#include <errno.h>
#include <sys/util.h>
#include <esp_attr.h>
static int uart_rom_esp32c3_poll_in(const struct device *dev, unsigned char *p_char)
{
ARG_UNUSED(dev);
return (int)esp_rom_uart_rx_one_char(p_char);
}
static IRAM_ATTR void uart_rom_esp32c3_poll_out(const struct device *dev,
unsigned char c)
{
ARG_UNUSED(dev);
esp_rom_uart_tx_one_char(c);
}
static int uart_rom_esp32c3_poll_err_check(const struct device *dev)
{
ARG_UNUSED(dev);
return 0;
}
static int uart_rom_esp32c3_init(const struct device *dev)
{
ARG_UNUSED(dev);
return 0;
}
static const DRAM_ATTR struct uart_driver_api uart_rom_esp32c3_api = {
.poll_in = uart_rom_esp32c3_poll_in,
.poll_out = uart_rom_esp32c3_poll_out,
.err_check = uart_rom_esp32c3_poll_err_check,
};
#define ESP32C3_ROM_UART_INIT(idx) \
DEVICE_DT_DEFINE(DT_NODELABEL(uart##idx), \
&uart_rom_esp32c3_init, \
NULL, \
NULL, \
NULL, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_rom_esp32c3_api); \
DT_INST_FOREACH_STATUS_OKAY(ESP32C3_ROM_UART_INIT)

View file

@ -1,57 +0,0 @@
/*
* Copyright (c) 2021 Espressif Systems (Shanghai) Co., Ltd.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define DT_DRV_COMPAT espressif_esp32s2_uart
/* Include esp-idf headers first to avoid redefining BIT() macro */
#include <soc.h>
#include <esp_attr.h>
#include <device.h>
#include <drivers/uart.h>
#include <drivers/clock_control.h>
static int uart_rom_esp32s2_poll_in(const struct device *dev, unsigned char *p_char)
{
ARG_UNUSED(dev);
return (int)esp_rom_uart_rx_one_char(p_char);
}
static IRAM_ATTR void uart_rom_esp32s2_poll_out(const struct device *dev,
unsigned char c)
{
ARG_UNUSED(dev);
esp_rom_uart_tx_one_char(c);
}
static int uart_rom_esp32s2_poll_err_check(const struct device *dev)
{
ARG_UNUSED(dev);
return 0;
}
static int uart_rom_esp32s2_init(const struct device *dev)
{
ARG_UNUSED(dev);
return 0;
}
static const DRAM_ATTR struct uart_driver_api uart_rom_esp32s2_api = {
.poll_in = uart_rom_esp32s2_poll_in,
.poll_out = uart_rom_esp32s2_poll_out,
.err_check = uart_rom_esp32s2_poll_err_check,
};
#define ESP32S2_ROM_UART_INIT(idx) \
DEVICE_DT_DEFINE(DT_NODELABEL(uart##idx), \
&uart_rom_esp32s2_init, \
NULL, \
NULL, \
NULL, \
PRE_KERNEL_1, \
CONFIG_SERIAL_INIT_PRIORITY, \
&uart_rom_esp32s2_api); \
DT_INST_FOREACH_STATUS_OKAY(ESP32S2_ROM_UART_INIT)

View file

@ -1,32 +0,0 @@
description: ESP32 UART
compatible: "espressif,esp32c3-uart"
include: uart-controller.yaml
properties:
reg:
required: true
interrupts:
required: false
tx-pin:
type: int
description: TX pin
required: false
rx-pin:
type: int
description: RX pin
required: false
rts-pin:
type: int
description: RTS pin
required: false
cts-pin:
type: int
description: CTS pin
required: false

View file

@ -1,32 +0,0 @@
description: ESP32S2 UART
compatible: "espressif,esp32s2-uart"
include: uart-controller.yaml
properties:
reg:
required: true
interrupts:
required: false
tx-pin:
type: int
description: TX pin
required: false
rx-pin:
type: int
description: RX pin
required: false
rts-pin:
type: int
description: RTS pin
required: false
cts-pin:
type: int
description: CTS pin
required: false

View file

@ -67,7 +67,7 @@ manifest:
groups:
- hal
- name: hal_espressif
revision: 8284e0c251a6450f9cdeff299988a647648296e3
revision: 2bb8d91a5e82418ff673090ca1feb18eb82c5e5c
path: modules/hal/espressif
west-commands: west/west-commands.yml
groups: