posix: rwlock: make pthread_rwlock_t a pooled ipc type

Like mutex, barrier, cond, spinlock, etc, make
pthread_rwlock_t a pooled ipc type.

Signed-off-by: Christopher Friedt <cfriedt@meta.com>
This commit is contained in:
Christopher Friedt 2024-01-15 23:37:58 -05:00 committed by Chris Friedt
commit b0a83a9177
6 changed files with 200 additions and 65 deletions

View file

@ -90,13 +90,7 @@ typedef struct pthread_barrierattr {
typedef uint32_t pthread_rwlockattr_t; typedef uint32_t pthread_rwlockattr_t;
typedef struct pthread_rwlock_obj { typedef uint32_t pthread_rwlock_t;
struct k_sem rd_sem;
struct k_sem wr_sem;
struct k_sem reader_active;/* blocks WR till reader has acquired lock */
int32_t status;
k_tid_t wr_owner;
} pthread_rwlock_t;
struct pthread_once { struct pthread_once {
bool flag; bool flag;

View file

@ -136,6 +136,13 @@ int pthread_condattr_setclock(pthread_condattr_t *att, clockid_t clock_id);
*/ */
#define PTHREAD_MUTEX_INITIALIZER (-1) #define PTHREAD_MUTEX_INITIALIZER (-1)
/**
* @brief Declare a rwlock as initialized
*
* Initialize a rwlock with the default rwlock attributes.
*/
#define PTHREAD_RWLOCK_INITIALIZER (-1)
/* /*
* Mutex attributes - type * Mutex attributes - type
* *

View file

@ -54,7 +54,7 @@ zephyr_library_sources_ifdef(CONFIG_PTHREAD_COND cond.c)
zephyr_library_sources_ifdef(CONFIG_PTHREAD_KEY key.c) zephyr_library_sources_ifdef(CONFIG_PTHREAD_KEY key.c)
zephyr_library_sources_ifdef(CONFIG_PTHREAD_MUTEX mutex.c) zephyr_library_sources_ifdef(CONFIG_PTHREAD_MUTEX mutex.c)
zephyr_library_sources_ifdef(CONFIG_PTHREAD pthread.c) zephyr_library_sources_ifdef(CONFIG_PTHREAD pthread.c)
zephyr_library_sources_ifdef(CONFIG_PTHREAD_IPC rwlock.c) zephyr_library_sources_ifdef(CONFIG_PTHREAD_RWLOCK rwlock.c)
zephyr_library_sources_ifdef(CONFIG_POSIX_PRIORITY_SCHEDULING sched.c) zephyr_library_sources_ifdef(CONFIG_POSIX_PRIORITY_SCHEDULING sched.c)
zephyr_library_sources_ifdef(CONFIG_PTHREAD_IPC semaphore.c) zephyr_library_sources_ifdef(CONFIG_PTHREAD_IPC semaphore.c)
zephyr_library_sources_ifdef(CONFIG_PTHREAD_SPINLOCK spinlock.c) zephyr_library_sources_ifdef(CONFIG_PTHREAD_SPINLOCK spinlock.c)

View file

@ -49,6 +49,7 @@ source "lib/posix/Kconfig.limits"
source "lib/posix/Kconfig.mqueue" source "lib/posix/Kconfig.mqueue"
source "lib/posix/Kconfig.mutex" source "lib/posix/Kconfig.mutex"
source "lib/posix/Kconfig.pthread" source "lib/posix/Kconfig.pthread"
source "lib/posix/Kconfig.rwlock"
source "lib/posix/Kconfig.sched" source "lib/posix/Kconfig.sched"
source "lib/posix/Kconfig.semaphore" source "lib/posix/Kconfig.semaphore"
source "lib/posix/Kconfig.signal" source "lib/posix/Kconfig.signal"

8
lib/posix/Kconfig.rwlock Normal file
View file

@ -0,0 +1,8 @@
# Copyright (c) 2024 Meta
#
# SPDX-License-Identifier: Apache-2.0
TYPE = PTHREAD_RWLOCK
type = pthread_rwlock_t
type-function = pthread_rwlock_timedrdlock
source "lib/posix/Kconfig.template.pooled_ipc_type"

View file

@ -3,19 +3,102 @@
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
#include <zephyr/kernel.h>
#include <errno.h>
#include <zephyr/posix/time.h>
#include <zephyr/posix/posix_types.h>
#define INITIALIZED 1 #include "posix_internal.h"
#define NOT_INITIALIZED 0
#include <zephyr/init.h>
#include <zephyr/kernel.h>
#include <zephyr/logging/log.h>
#include <zephyr/posix/pthread.h>
#include <zephyr/sys/bitarray.h>
#define CONCURRENT_READER_LIMIT (CONFIG_MAX_PTHREAD_COUNT + 1) #define CONCURRENT_READER_LIMIT (CONFIG_MAX_PTHREAD_COUNT + 1)
struct posix_rwlock {
struct k_sem rd_sem;
struct k_sem wr_sem;
struct k_sem reader_active; /* blocks WR till reader has acquired lock */
k_tid_t wr_owner;
};
int64_t timespec_to_timeoutms(const struct timespec *abstime); int64_t timespec_to_timeoutms(const struct timespec *abstime);
static uint32_t read_lock_acquire(pthread_rwlock_t *rwlock, int32_t timeout); static uint32_t read_lock_acquire(struct posix_rwlock *rwl, int32_t timeout);
static uint32_t write_lock_acquire(pthread_rwlock_t *rwlock, int32_t timeout); static uint32_t write_lock_acquire(struct posix_rwlock *rwl, int32_t timeout);
LOG_MODULE_REGISTER(pthread_rwlock, CONFIG_PTHREAD_RWLOCK_LOG_LEVEL);
static struct k_spinlock posix_rwlock_spinlock;
static struct posix_rwlock posix_rwlock_pool[CONFIG_MAX_PTHREAD_RWLOCK_COUNT];
SYS_BITARRAY_DEFINE_STATIC(posix_rwlock_bitarray, CONFIG_MAX_PTHREAD_RWLOCK_COUNT);
/*
* We reserve the MSB to mark a pthread_rwlock_t as initialized (from the
* perspective of the application). With a linear space, this means that
* the theoretical pthread_rwlock_t range is [0,2147483647].
*/
BUILD_ASSERT(CONFIG_MAX_PTHREAD_RWLOCK_COUNT < PTHREAD_OBJ_MASK_INIT,
"CONFIG_MAX_PTHREAD_RWLOCK_COUNT is too high");
static inline size_t posix_rwlock_to_offset(struct posix_rwlock *rwl)
{
return rwl - posix_rwlock_pool;
}
static inline size_t to_posix_rwlock_idx(pthread_rwlock_t rwlock)
{
return mark_pthread_obj_uninitialized(rwlock);
}
static struct posix_rwlock *get_posix_rwlock(pthread_rwlock_t rwlock)
{
int actually_initialized;
size_t bit = to_posix_rwlock_idx(rwlock);
/* if the provided rwlock does not claim to be initialized, its invalid */
if (!is_pthread_obj_initialized(rwlock)) {
LOG_ERR("RWlock is uninitialized (%x)", rwlock);
return NULL;
}
/* Mask off the MSB to get the actual bit index */
if (sys_bitarray_test_bit(&posix_rwlock_bitarray, bit, &actually_initialized) < 0) {
LOG_ERR("RWlock is invalid (%x)", rwlock);
return NULL;
}
if (actually_initialized == 0) {
/* The rwlock claims to be initialized but is actually not */
LOG_ERR("RWlock claims to be initialized (%x)", rwlock);
return NULL;
}
return &posix_rwlock_pool[bit];
}
struct posix_rwlock *to_posix_rwlock(pthread_rwlock_t *rwlock)
{
size_t bit;
struct posix_rwlock *rwl;
if (*rwlock != PTHREAD_RWLOCK_INITIALIZER) {
return get_posix_rwlock(*rwlock);
}
/* Try and automatically associate a posix_rwlock */
if (sys_bitarray_alloc(&posix_rwlock_bitarray, 1, &bit) < 0) {
LOG_ERR("Unable to allocate pthread_rwlock_t");
return NULL;
}
/* Record the associated posix_rwlock in rwl and mark as initialized */
*rwlock = mark_pthread_obj_initialized(bit);
/* Initialize the posix_rwlock */
rwl = &posix_rwlock_pool[bit];
return rwl;
}
/** /**
* @brief Initialize read-write lock object. * @brief Initialize read-write lock object.
@ -25,12 +108,23 @@ static uint32_t write_lock_acquire(pthread_rwlock_t *rwlock, int32_t timeout);
int pthread_rwlock_init(pthread_rwlock_t *rwlock, int pthread_rwlock_init(pthread_rwlock_t *rwlock,
const pthread_rwlockattr_t *attr) const pthread_rwlockattr_t *attr)
{ {
k_sem_init(&rwlock->rd_sem, CONCURRENT_READER_LIMIT, struct posix_rwlock *rwl;
CONCURRENT_READER_LIMIT);
k_sem_init(&rwlock->wr_sem, 1, 1); ARG_UNUSED(attr);
k_sem_init(&rwlock->reader_active, 1, 1); *rwlock = PTHREAD_RWLOCK_INITIALIZER;
rwlock->wr_owner = NULL;
rwlock->status = INITIALIZED; rwl = to_posix_rwlock(rwlock);
if (rwl == NULL) {
return ENOMEM;
}
k_sem_init(&rwl->rd_sem, CONCURRENT_READER_LIMIT, CONCURRENT_READER_LIMIT);
k_sem_init(&rwl->wr_sem, 1, 1);
k_sem_init(&rwl->reader_active, 1, 1);
rwl->wr_owner = NULL;
LOG_DBG("Initialized rwlock %p", rwl);
return 0; return 0;
} }
@ -41,20 +135,28 @@ int pthread_rwlock_init(pthread_rwlock_t *rwlock,
*/ */
int pthread_rwlock_destroy(pthread_rwlock_t *rwlock) int pthread_rwlock_destroy(pthread_rwlock_t *rwlock)
{ {
if (rwlock->status == NOT_INITIALIZED) { int ret = 0;
int err;
size_t bit;
struct posix_rwlock *rwl;
rwl = get_posix_rwlock(*rwlock);
if (rwl == NULL) {
return EINVAL; return EINVAL;
} }
if (rwlock->wr_owner != NULL) { K_SPINLOCK(&posix_rwlock_spinlock) {
return EBUSY; if (rwl->wr_owner != NULL) {
ret = EBUSY;
K_SPINLOCK_BREAK;
}
bit = posix_rwlock_to_offset(rwl);
err = sys_bitarray_free(&posix_rwlock_bitarray, 1, bit);
__ASSERT_NO_MSG(err == 0);
} }
if (rwlock->status == INITIALIZED) { return ret;
rwlock->status = NOT_INITIALIZED;
return 0;
}
return EINVAL;
} }
/** /**
@ -67,11 +169,14 @@ int pthread_rwlock_destroy(pthread_rwlock_t *rwlock)
*/ */
int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock) int pthread_rwlock_rdlock(pthread_rwlock_t *rwlock)
{ {
if (rwlock->status == NOT_INITIALIZED) { struct posix_rwlock *rwl;
rwl = get_posix_rwlock(*rwlock);
if (rwl == NULL) {
return EINVAL; return EINVAL;
} }
return read_lock_acquire(rwlock, SYS_FOREVER_MS); return read_lock_acquire(rwl, SYS_FOREVER_MS);
} }
/** /**
@ -87,15 +192,20 @@ int pthread_rwlock_timedrdlock(pthread_rwlock_t *rwlock,
{ {
int32_t timeout; int32_t timeout;
uint32_t ret = 0U; uint32_t ret = 0U;
struct posix_rwlock *rwl;
if (rwlock->status == NOT_INITIALIZED || abstime->tv_nsec < 0 || if (abstime->tv_nsec < 0 || abstime->tv_nsec > NSEC_PER_SEC) {
abstime->tv_nsec > NSEC_PER_SEC) {
return EINVAL; return EINVAL;
} }
timeout = (int32_t) timespec_to_timeoutms(abstime); timeout = (int32_t) timespec_to_timeoutms(abstime);
if (read_lock_acquire(rwlock, timeout) != 0U) { rwl = get_posix_rwlock(*rwlock);
if (rwl == NULL) {
return EINVAL;
}
if (read_lock_acquire(rwl, timeout) != 0U) {
ret = ETIMEDOUT; ret = ETIMEDOUT;
} }
@ -112,11 +222,14 @@ int pthread_rwlock_timedrdlock(pthread_rwlock_t *rwlock,
*/ */
int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock) int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock)
{ {
if (rwlock->status == NOT_INITIALIZED) { struct posix_rwlock *rwl;
rwl = get_posix_rwlock(*rwlock);
if (rwl == NULL) {
return EINVAL; return EINVAL;
} }
return read_lock_acquire(rwlock, 0); return read_lock_acquire(rwl, 0);
} }
/** /**
@ -129,11 +242,14 @@ int pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock)
*/ */
int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock) int pthread_rwlock_wrlock(pthread_rwlock_t *rwlock)
{ {
if (rwlock->status == NOT_INITIALIZED) { struct posix_rwlock *rwl;
rwl = get_posix_rwlock(*rwlock);
if (rwl == NULL) {
return EINVAL; return EINVAL;
} }
return write_lock_acquire(rwlock, SYS_FOREVER_MS); return write_lock_acquire(rwl, SYS_FOREVER_MS);
} }
/** /**
@ -149,15 +265,20 @@ int pthread_rwlock_timedwrlock(pthread_rwlock_t *rwlock,
{ {
int32_t timeout; int32_t timeout;
uint32_t ret = 0U; uint32_t ret = 0U;
struct posix_rwlock *rwl;
if (rwlock->status == NOT_INITIALIZED || abstime->tv_nsec < 0 || if (abstime->tv_nsec < 0 || abstime->tv_nsec > NSEC_PER_SEC) {
abstime->tv_nsec > NSEC_PER_SEC) {
return EINVAL; return EINVAL;
} }
timeout = (int32_t) timespec_to_timeoutms(abstime); timeout = (int32_t) timespec_to_timeoutms(abstime);
if (write_lock_acquire(rwlock, timeout) != 0U) { rwl = get_posix_rwlock(*rwlock);
if (rwl == NULL) {
return EINVAL;
}
if (write_lock_acquire(rwl, timeout) != 0U) {
ret = ETIMEDOUT; ret = ETIMEDOUT;
} }
@ -174,11 +295,14 @@ int pthread_rwlock_timedwrlock(pthread_rwlock_t *rwlock,
*/ */
int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock) int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock)
{ {
if (rwlock->status == NOT_INITIALIZED) { struct posix_rwlock *rwl;
rwl = get_posix_rwlock(*rwlock);
if (rwl == NULL) {
return EINVAL; return EINVAL;
} }
return write_lock_acquire(rwlock, 0); return write_lock_acquire(rwl, 0);
} }
/** /**
@ -189,37 +313,38 @@ int pthread_rwlock_trywrlock(pthread_rwlock_t *rwlock)
*/ */
int pthread_rwlock_unlock(pthread_rwlock_t *rwlock) int pthread_rwlock_unlock(pthread_rwlock_t *rwlock)
{ {
if (rwlock->status == NOT_INITIALIZED) { struct posix_rwlock *rwl;
rwl = get_posix_rwlock(*rwlock);
if (rwl == NULL) {
return EINVAL; return EINVAL;
} }
if (k_current_get() == rwlock->wr_owner) { if (k_current_get() == rwl->wr_owner) {
/* Write unlock */ /* Write unlock */
rwlock->wr_owner = NULL; rwl->wr_owner = NULL;
k_sem_give(&rwlock->reader_active); k_sem_give(&rwl->reader_active);
k_sem_give(&rwlock->wr_sem); k_sem_give(&rwl->wr_sem);
} else { } else {
/* Read unlock */ /* Read unlock */
k_sem_give(&rwlock->rd_sem); k_sem_give(&rwl->rd_sem);
if (k_sem_count_get(&rwlock->rd_sem) == if (k_sem_count_get(&rwl->rd_sem) == CONCURRENT_READER_LIMIT) {
CONCURRENT_READER_LIMIT) {
/* Last read lock, unlock writer */ /* Last read lock, unlock writer */
k_sem_give(&rwlock->reader_active); k_sem_give(&rwl->reader_active);
} }
} }
return 0; return 0;
} }
static uint32_t read_lock_acquire(struct posix_rwlock *rwl, int32_t timeout)
static uint32_t read_lock_acquire(pthread_rwlock_t *rwlock, int32_t timeout)
{ {
uint32_t ret = 0U; uint32_t ret = 0U;
if (k_sem_take(&rwlock->wr_sem, SYS_TIMEOUT_MS(timeout)) == 0) { if (k_sem_take(&rwl->wr_sem, SYS_TIMEOUT_MS(timeout)) == 0) {
k_sem_take(&rwlock->reader_active, K_NO_WAIT); k_sem_take(&rwl->reader_active, K_NO_WAIT);
k_sem_take(&rwlock->rd_sem, K_NO_WAIT); k_sem_take(&rwl->rd_sem, K_NO_WAIT);
k_sem_give(&rwlock->wr_sem); k_sem_give(&rwl->wr_sem);
} else { } else {
ret = EBUSY; ret = EBUSY;
} }
@ -227,7 +352,7 @@ static uint32_t read_lock_acquire(pthread_rwlock_t *rwlock, int32_t timeout)
return ret; return ret;
} }
static uint32_t write_lock_acquire(pthread_rwlock_t *rwlock, int32_t timeout) static uint32_t write_lock_acquire(struct posix_rwlock *rwl, int32_t timeout)
{ {
uint32_t ret = 0U; uint32_t ret = 0U;
int64_t elapsed_time, st_time = k_uptime_get(); int64_t elapsed_time, st_time = k_uptime_get();
@ -236,7 +361,7 @@ static uint32_t write_lock_acquire(pthread_rwlock_t *rwlock, int32_t timeout)
k_timeout = SYS_TIMEOUT_MS(timeout); k_timeout = SYS_TIMEOUT_MS(timeout);
/* waiting for release of write lock */ /* waiting for release of write lock */
if (k_sem_take(&rwlock->wr_sem, k_timeout) == 0) { if (k_sem_take(&rwl->wr_sem, k_timeout) == 0) {
/* update remaining timeout time for 2nd sem */ /* update remaining timeout time for 2nd sem */
if (timeout != SYS_FOREVER_MS) { if (timeout != SYS_FOREVER_MS) {
elapsed_time = k_uptime_get() - st_time; elapsed_time = k_uptime_get() - st_time;
@ -247,10 +372,10 @@ static uint32_t write_lock_acquire(pthread_rwlock_t *rwlock, int32_t timeout)
k_timeout = SYS_TIMEOUT_MS(timeout); k_timeout = SYS_TIMEOUT_MS(timeout);
/* waiting for reader to complete operation */ /* waiting for reader to complete operation */
if (k_sem_take(&rwlock->reader_active, k_timeout) == 0) { if (k_sem_take(&rwl->reader_active, k_timeout) == 0) {
rwlock->wr_owner = k_current_get(); rwl->wr_owner = k_current_get();
} else { } else {
k_sem_give(&rwlock->wr_sem); k_sem_give(&rwl->wr_sem);
ret = EBUSY; ret = EBUSY;
} }