drivers/spi: SPI driver for SiFive Freedom

A driver for the sifive,spi0 SPI device on SiFive Freedom platforms

Signed-off-by: Nathaniel Graff <nathaniel.graff@sifive.com>
This commit is contained in:
Nathaniel Graff 2018-11-21 11:28:29 -08:00 committed by Kumar Gala
commit 9e2ef8db6d
5 changed files with 384 additions and 0 deletions

View file

@ -7,6 +7,7 @@ zephyr_library_sources_ifdef(CONFIG_SPI_MCUX_DSPI spi_mcux_dspi.c)
zephyr_library_sources_ifdef(CONFIG_SPI_MCUX_LPSPI spi_mcux_lpspi.c)
zephyr_library_sources_ifdef(CONFIG_SPI_SAM spi_sam.c)
zephyr_library_sources_ifdef(CONFIG_SPI_SAM0 spi_sam0.c)
zephyr_library_sources_ifdef(CONFIG_SPI_SIFIVE spi_sifive.c)
zephyr_library_sources_ifdef(CONFIG_NRFX_SPI spi_nrfx_spi.c)
zephyr_library_sources_ifdef(CONFIG_NRFX_SPIM spi_nrfx_spim.c)
zephyr_library_sources_ifdef(CONFIG_NRFX_SPIS spi_nrfx_spis.c)

View file

@ -180,6 +180,8 @@ source "drivers/spi/Kconfig.sam"
source "drivers/spi/Kconfig.sam0"
source "drivers/spi/Kconfig.sifive"
source "drivers/spi/Kconfig.nrfx"
endif # SPI

View file

@ -0,0 +1,31 @@
# Kconfig - SiFive SPI Driver configuration options
#
# Copyright (c) 2018 SiFive Inc.
#
# SPDX-License-Identifier: Apache-2.0
#
menuconfig SPI_SIFIVE
bool "SiFive SPI controller driver"
depends on SPI
depends on SOC_SERIES_RISCV32_SIFIVE_FREEDOM
help
Enable the SPI peripherals on SiFive Freedom processors
if SPI_SIFIVE
config SIFIVE_SPI_0_ROM
bool "SPI 0 is used to access SPI Flash ROM"
default y
depends on SPI_SIFIVE
help
If enabled, SPI 0 is reserved for accessing the SPI flash ROM and a
driver interface won't be instantiated for SPI 0.
Beware disabling this option on HiFive 1! The SPI flash ROM is where the
program is stored, and if this driver initializes the interface for
peripheral control the FE310 will crash on boot.
endif # SPI_SIFIVE

275
drivers/spi/spi_sifive.c Normal file
View file

@ -0,0 +1,275 @@
/*
* Copyright (c) 2018 SiFive Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#define LOG_LEVEL CONFIG_SPI_LOG_LEVEL
#include <logging/log.h>
LOG_MODULE_REGISTER(spi_sifive);
#include "spi_sifive.h"
#include <stdbool.h>
/* Helper Functions */
static inline void sys_set_mask(mem_addr_t addr, u32_t mask, u32_t value)
{
u32_t temp = sys_read32(addr);
temp &= ~(mask);
temp |= value;
sys_write32(temp, addr);
}
int spi_config(struct device *dev, u32_t frequency, u16_t operation)
{
u32_t div;
u32_t fmt_len;
if (SPI_OP_MODE_GET(operation) != SPI_OP_MODE_MASTER) {
return -ENOTSUP;
}
if (operation & SPI_MODE_LOOP) {
return -ENOTSUP;
}
/* Set the SPI frequency */
div = (SPI_CFG(dev)->f_sys / (2 * frequency)) - 1;
sys_write32((SF_SCKDIV_DIV_MASK & div), SPI_REG(dev, REG_SCKDIV));
/* Set the polarity */
if (operation & SPI_MODE_CPOL) {
/* If CPOL is set, then SCK idles at logical 1 */
sys_set_bit(SPI_REG(dev, REG_SCKMODE), SF_SCKMODE_POL);
} else {
/* SCK idles at logical 0 */
sys_clear_bit(SPI_REG(dev, REG_SCKMODE), SF_SCKMODE_POL);
}
/* Set the phase */
if (operation & SPI_MODE_CPHA) {
/*
* If CPHA is set, then data is sampled
* on the trailing SCK edge
*/
sys_set_bit(SPI_REG(dev, REG_SCKMODE), SF_SCKMODE_PHA);
} else {
/* Data is sampled on the leading SCK edge */
sys_clear_bit(SPI_REG(dev, REG_SCKMODE), SF_SCKMODE_PHA);
}
/* Get the frame length */
fmt_len = SPI_WORD_SIZE_GET(operation);
if (fmt_len > SF_FMT_LEN_MASK) {
return -ENOTSUP;
}
/* Set the frame length */
fmt_len = fmt_len << SF_FMT_LEN;
fmt_len &= SF_FMT_LEN_MASK;
sys_set_mask(SPI_REG(dev, REG_FMT), SF_FMT_LEN_MASK, fmt_len);
if ((operation & SPI_LINES_MASK) != SPI_LINES_SINGLE) {
return -ENOTSUP;
}
/* Set single line operation */
sys_set_mask(SPI_REG(dev, REG_FMT),
SF_FMT_PROTO_MASK,
SF_FMT_PROTO_SINGLE);
/* Set the endianness */
if (operation & SPI_TRANSFER_LSB) {
sys_set_bit(SPI_REG(dev, REG_FMT), SF_FMT_ENDIAN);
} else {
sys_clear_bit(SPI_REG(dev, REG_FMT), SF_FMT_ENDIAN);
}
return 0;
}
void spi_sifive_send(struct device *dev, u16_t frame)
{
while (SPI_REG(dev, REG_TXDATA) & SF_TXDATA_FULL)
;
sys_write32((u32_t) frame, SPI_REG(dev, REG_TXDATA));
}
u16_t spi_sifive_recv(struct device *dev)
{
u32_t val;
while ((val = sys_read32(SPI_REG(dev, REG_RXDATA))) & SF_RXDATA_EMPTY)
;
return (u16_t) val;
}
void spi_sifive_xfer(struct device *dev, const bool hw_cs_control)
{
struct spi_context *ctx = &SPI_DATA(dev)->ctx;
u32_t send_len = spi_context_longest_current_buf(ctx);
for (u32_t i = 0; i < send_len; i++) {
/* Send a frame */
if (i < ctx->tx_len) {
spi_sifive_send(dev, (u16_t) (ctx->tx_buf)[i]);
} else {
/* Send dummy bytes */
spi_sifive_send(dev, 0);
}
/* Receive a frame */
if (i < ctx->rx_len) {
ctx->rx_buf[i] = (u8_t) spi_sifive_recv(dev);
} else {
/* Discard returned value */
spi_sifive_recv(dev);
}
}
/* Deassert the CS line */
if (!hw_cs_control) {
spi_context_cs_control(&SPI_DATA(dev)->ctx, false);
} else {
sys_write32(SF_CSMODE_OFF, SPI_REG(dev, REG_CSMODE));
}
spi_context_complete(ctx, 0);
}
/* API Functions */
int spi_sifive_init(struct device *dev)
{
/* Disable SPI Flash mode */
sys_clear_bit(SPI_REG(dev, REG_FCTRL), SF_FCTRL_EN);
/* Make sure the context is unlocked */
spi_context_unlock_unconditionally(&SPI_DATA(dev)->ctx);
return 0;
}
int spi_sifive_transceive(struct device *dev,
const struct spi_config *config,
const struct spi_buf_set *tx_bufs,
const struct spi_buf_set *rx_bufs)
{
int rc = 0;
bool hw_cs_control = false;
/* Lock the SPI Context */
spi_context_lock(&SPI_DATA(dev)->ctx, false, NULL);
/* Configure the SPI bus */
SPI_DATA(dev)->ctx.config = config;
/*
* If the chip select configuration is not present, we'll ask the
* SPI peripheral itself to control the CS line
*/
if (config->cs == NULL) {
hw_cs_control = true;
}
if (!hw_cs_control) {
/*
* If the user has requested manual GPIO control, ask the
* context for control and disable HW control
*/
spi_context_cs_configure(&SPI_DATA(dev)->ctx);
sys_write32(SF_CSMODE_OFF, SPI_REG(dev, REG_CSMODE));
} else {
/*
* Tell the hardware to control the requested CS pin.
* NOTE:
* For the SPI peripheral, the pin number is not the
* GPIO pin, but the index into the list of available
* CS lines for the SPI peripheral.
*/
sys_write32(config->slave, SPI_REG(dev, REG_CSID));
sys_write32(SF_CSMODE_OFF, SPI_REG(dev, REG_CSMODE));
}
rc = spi_config(dev, config->frequency, config->operation);
if (rc < 0) {
spi_context_release(&SPI_DATA(dev)->ctx, rc);
return rc;
}
spi_context_buffers_setup(&SPI_DATA(dev)->ctx, tx_bufs, rx_bufs, 1);
/* Assert the CS line */
if (!hw_cs_control) {
spi_context_cs_control(&SPI_DATA(dev)->ctx, true);
} else {
sys_write32(SF_CSMODE_HOLD, SPI_REG(dev, REG_CSMODE));
}
/* Perform transfer */
spi_sifive_xfer(dev, hw_cs_control);
rc = spi_context_wait_for_completion(&SPI_DATA(dev)->ctx);
spi_context_release(&SPI_DATA(dev)->ctx, rc);
return rc;
}
int spi_sifive_release(struct device *dev, const struct spi_config *config)
{
spi_context_unlock_unconditionally(&SPI_DATA(dev)->ctx);
return 0;
}
/* Device Instantiation */
static struct spi_driver_api spi_sifive_api = {
.transceive = spi_sifive_transceive,
.release = spi_sifive_release,
};
#define SPI_INIT(n) \
static struct spi_sifive_data spi_sifive_data_##n = { \
SPI_CONTEXT_INIT_LOCK(spi_sifive_data_##n, ctx), \
SPI_CONTEXT_INIT_SYNC(spi_sifive_data_##n, ctx), \
}; \
static struct spi_sifive_cfg spi_sifive_cfg_##n = { \
.base = DT_SIFIVE_SPI0_##n##_CONTROL_BASE_ADDRESS, \
.f_sys = DT_SIFIVE_SPI0_##n##_CLOCK_FREQUENCY, \
}; \
DEVICE_AND_API_INIT(spi_##n, \
DT_SIFIVE_SPI0_##n##_LABEL, \
spi_sifive_init, \
&spi_sifive_data_##n, \
&spi_sifive_cfg_##n, \
POST_KERNEL, \
CONFIG_SPI_INIT_PRIORITY, \
&spi_sifive_api)
#ifndef CONFIG_SIFIVE_SPI_0_ROM
#ifdef DT_SIFIVE_SPI0_0_LABEL
SPI_INIT(0);
#endif /* DT_SIFIVE_SPI0_0_LABEL */
#endif /* !DT_SIFIVE_SPI0_0_ROM */
#ifdef DT_SIFIVE_SPI0_1_LABEL
SPI_INIT(1);
#endif /* DT_SIFIVE_SPI0_1_LABEL */
#ifdef DT_SIFIVE_SPI0_2_LABEL
SPI_INIT(2);
#endif /* DT_SIFIVE_SPI0_2_LABEL */

75
drivers/spi/spi_sifive.h Normal file
View file

@ -0,0 +1,75 @@
/*
* Copyright (c) 2018 SiFive Inc.
*
* SPDX-License-Identifier: Apache-2.0
*/
#ifndef _SPI_SIFIVE__H
#define _SPI_SIFIVE__H
#include "spi_context.h"
#include <sys_io.h>
#include <device.h>
#include <spi.h>
#define SPI_CFG(dev) ((struct spi_sifive_cfg *) ((dev)->config->config_info))
#define SPI_DATA(dev) ((struct spi_sifive_data *) ((dev)->driver_data))
#define SPI_REG(dev, offset) ((mem_addr_t) (SPI_CFG(dev)->base + (offset)))
/* Register Offsets */
#define REG_SCKDIV 0x000
#define REG_SCKMODE 0x004
#define REG_CSID 0x010
#define REG_CSDEF 0x014
#define REG_CSMODE 0x018
#define REG_DELAY0 0x028
#define REG_DELAY1 0x02C
#define REG_FMT 0x040
#define REG_TXDATA 0x048
#define REG_RXDATA 0x04C
#define REG_TXMARK 0x050
#define REG_RXMARK 0x054
#define REG_FCTRL 0x060
#define REG_FFMT 0x064
#define REG_IE 0x070
#define REG_IP 0x074
/* Masks */
#define SF_SCKDIV_DIV_MASK (0xFFF << 0)
#define SF_FMT_PROTO_MASK (0x3 << 0)
#define SF_FMT_LEN_MASK (0xF << 16)
/* Offsets */
#define SF_SCKMODE_POL 1
#define SF_SCKMODE_PHA 0
#define SF_FMT_LEN 16
#define SF_FMT_ENDIAN 2
#define SF_FCTRL_EN 0
/* Values */
#define SF_CSMODE_AUTO 0
#define SF_CSMODE_HOLD 2
#define SF_CSMODE_OFF 3
#define SF_FMT_PROTO_SINGLE 0
#define SF_TXDATA_FULL (1 << 31)
#define SF_RXDATA_EMPTY (1 << 31)
/* Structure Declarations */
struct spi_sifive_data {
struct spi_context ctx;
};
struct spi_sifive_cfg {
u32_t base;
u32_t f_sys;
};
#endif /* _SPI_SIFIVE__H */