doxygen: nanokernel doxygenation

Doxegenize and cleanup headers for nanokernel
 - fibers
 - context
 - timers
 - stacks

Also minor cleanup of x86/arch.h

Change-Id: Ib65568d4ec034b69e8a6214ba4b52a7f719300bb
Signed-off-by: Anas Nashif <anas.nashif@intel.com>
This commit is contained in:
Anas Nashif 2015-08-29 14:41:17 -04:00
commit 952cd52e16
7 changed files with 406 additions and 283 deletions

View file

@ -28,7 +28,7 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
/**
* @file
* @brief IA-32 specific nanokernel interface header
* This header contains the IA-32 specific nanokernel interface. It is included
@ -229,7 +229,7 @@ typedef struct nanoEsf {
unsigned int ss;
} NANO_ESF;
/*
/**
* @brief Nanokernel "interrupt stack frame" (ISF)
* An "interrupt stack frame" (ISF) as constructed by the processor
* and the interrupt wrapper function _IntExit(). When an interrupt
@ -433,7 +433,7 @@ extern FUNC_NORETURN void _SysFatalErrorHandler(unsigned int reason,
/** Dummy ESF for fatal errors that would otherwise not have an ESF */
extern const NANO_ESF _default_esf;
/*
/**
* @brief Configure an interrupt vector of the specified priority
*
* This routine is invoked by the kernel to configure an interrupt vector of

View file

@ -93,7 +93,26 @@ typedef int nano_context_type_t;
/*
* execution context APIs
*/
/**
* @brief Return the currently executing thread
*
* This routine returns a pointer to the thread control block of the currently
* executing thread. It is cast to a nano_thread_id_t for use publicly.
*
* @return nano_thread_id_t of the currently executing thread.
*/
extern nano_thread_id_t sys_thread_self_get(void);
/**
*
* @brief Return the type of the current execution context
*
* This routine returns the type of execution context currently executing.
*
* @return nano_context_type_t of the currently executing thread.
*/
extern nano_context_type_t sys_execution_context_type_get(void);
extern int _is_thread_essential(nano_thread_id_t pCtx);
@ -101,19 +120,15 @@ extern int _is_thread_essential(nano_thread_id_t pCtx);
* fiber APIs
*/
/* execution context-independent method (when context is not known) */
void fiber_start(char *stack, unsigned stack_size, nano_fiber_entry_t entry,
int arg1, int arg2, unsigned prio, unsigned options);
/* methods for fibers */
/**
* @brief Initialize and start a fiber
*
* This routine initilizes and starts a fiber; it can be called from
* This routine initializes and starts a fiber; it can be called from
* either a fiber or a task. When this routine is called from a
* task, the newly created fiber will start executing immediately.
*
* INTERNAL
* @internal
* Given that this routine is _not_ ISR-callable, the following code is used
* to differentiate between a task and fiber:
*
@ -122,6 +137,27 @@ void fiber_start(char *stack, unsigned stack_size, nano_fiber_entry_t entry,
* Given that the _fiber_start() primitive is not considered real-time
* performance critical, a runtime check to differentiate between a calling
* task or fiber is performed in order to conserve footprint.
* @endinternal
*
* @param pStack Pointer to the stack space
* @param stackSize Stack size in bytes
* @param entry Fiber entry
* @param arg1 1st parameter to entry point
* @param arg2 2nd parameter to entry point
* @param prio Fiber priority
* @param options unused
* @return N/A
*/
void fiber_start(char *stack, unsigned stack_size, nano_fiber_entry_t entry,
int arg1, int arg2, unsigned prio, unsigned options);
/* methods for fibers */
/**
* @brief Initialize and start a fiber
*
* This routine initializes and starts a fiber; it can be called from
* a fiber.
*
* @param pStack Pointer to the stack space
* @param stackSize Stack size in bytes
@ -154,7 +190,7 @@ extern void fiber_yield(void);
/**
* @brief Abort the currently executing fiber
*
* This routine is used to abort the currrently executing fiber. This can occur
* This routine is used to abort the currently executing fiber. This can occur
* because:
* - the fiber has explicitly aborted itself (by calling this routine),
* - the fiber has implicitly aborted itself (by returning from its entry point),
@ -193,7 +229,7 @@ extern void fiber_sleep(int32_t timeout);
* @param options unused
* @param timeout_in_ticks timeout in ticks
*
* @return a handle to allow cancelling the delayed start
* @return a handle to allow canceling the delayed start
*/
extern void *fiber_fiber_delayed_start(char *stack,
unsigned int stack_size_in_bytes,
@ -398,7 +434,7 @@ extern void *nano_fiber_fifo_get(struct nano_fifo *fifo);
/**
*
* @brief Get the head element of a fifo, wait if emtpy
* @brief Get the head element of a fifo, wait if empty
*
* Remove the head element from the specified system-level multiple-waiter
* fifo; it can only be called from a fiber.
@ -777,7 +813,7 @@ extern void nano_sem_take_wait(struct nano_sem *sem);
*
* @brief Give a nanokernel semaphore (no context switch)
*
* This routine performs a "give" operation on a nanokernel sempahore object;
* This routine performs a "give" operation on a nanokernel semaphore object;
* it may be call from an ISR context. A fiber pending on
* the semaphore object will be made ready, but will NOT be scheduled to
* execute.
@ -792,7 +828,7 @@ extern void nano_isr_sem_give(struct nano_sem *sem);
*
* @brief Take a nanokernel semaphore, fail if unavailable
*
* Attempt to take a nanokernel sempahore; it may be called from a
* Attempt to take a nanokernel semaphore; it may be called from a
* ISR context.
*
* If the semaphore is not available, this function returns immediately, i.e.
@ -810,7 +846,7 @@ extern int nano_isr_sem_take(struct nano_sem *sem);
*
* @brief Give a nanokernel semaphore (no context switch)
*
* This routine performs a "give" operation on a nanokernel sempahore object;
* This routine performs a "give" operation on a nanokernel semaphore object;
* it may be call from a fiber. A fiber pending on
* the semaphore object will be made ready, but will NOT be scheduled to
* execute.
@ -825,7 +861,7 @@ extern void nano_fiber_sem_give(struct nano_sem *sem);
*
* @brief Take a nanokernel semaphore, fail if unavailable
*
* Attempt to take a nanokernel sempahore; it may be called from a fiber.
* Attempt to take a nanokernel semaphore; it may be called from a fiber.
*
* If the semaphore is not available, this function returns immediately, i.e.
* a wait (pend) operation will NOT be performed.
@ -840,7 +876,7 @@ extern int nano_fiber_sem_take(struct nano_sem *sem);
*
* @brief Test a nanokernel semaphore, wait if unavailable
*
* Take a nanokernel sempahore; it can only be called from a fiber.
* Take a nanokernel semaphore; it can only be called from a fiber.
*
* If the nanokernel semaphore is not available, i.e. the event counter
* is 0, the calling fiber will wait (pend) until the semaphore is
@ -856,7 +892,7 @@ extern void nano_fiber_sem_take_wait(struct nano_sem *sem);
/**
* @brief test a nanokernel semaphore, wait with a timeout if unavailable
*
* Take a nanokernel sempahore; it can only be called from a fiber.
* Take a nanokernel semaphore; it can only be called from a fiber.
*
* If the nanokernel semaphore is not available, i.e. the event counter
* is 0, the calling fiber will wait (pend) until the semaphore is
@ -865,7 +901,6 @@ extern void nano_fiber_sem_take_wait(struct nano_sem *sem);
*
* @param sem the semaphore to take
* @param timeout_in_ticks time to wait in ticks
*
* @param sem Pointer to a nano_sem structure.
*
* @return 1 if semaphore is available, 0 if timed out
@ -880,7 +915,7 @@ extern int nano_fiber_sem_take_wait_timeout(struct nano_sem *sem,
*
* @brief Give a nanokernel semaphore
*
* This routine performs a "give" operation on a nanokernel sempahore object;
* This routine performs a "give" operation on a nanokernel semaphore object;
* it can only be called from a task. A fiber pending on the
* semaphore object will be made ready, and will preempt the running task
* immediately.
@ -895,7 +930,7 @@ extern void nano_task_sem_give(struct nano_sem *sem);
*
* @brief Take a nanokernel semaphore, fail if unavailable
*
* Attempt to take a nanokernel sempahore; it can only be called from a task.
* Attempt to take a nanokernel semaphore; it can only be called from a task.
*
* If the semaphore is not available, this function returns immediately, i.e.
* a wait (pend) operation will NOT be performed.
@ -910,7 +945,7 @@ extern int nano_task_sem_take(struct nano_sem *sem);
*
* @brief Take a nanokernel semaphore, poll if unavailable
*
* Take a nanokernel sempahore; it can only be called from a task.
* Take a nanokernel semaphore; it can only be called from a task.
*
* If the nanokernel semaphore is not available, i.e. the event counter
* is 0, the calling task will poll until the semaphore is given
@ -926,7 +961,7 @@ extern void nano_task_sem_take_wait(struct nano_sem *sem);
/**
* @brief test a nanokernel semaphore, poll with a timeout if unavailable
*
* Take a nanokernel sempahore; it can only be called from a task.
* Take a nanokernel semaphore; it can only be called from a task.
*
* If the nanokernel semaphore is not available, i.e. the event counter is 0,
* the calling task will poll until the semaphore is given (via
@ -950,17 +985,157 @@ struct nano_stack {
uint32_t *next;
};
/**
*
* @brief Initialize a nanokernel stack object
*
* This function initializes a nanokernel stack object structure.
*
* It may be called from either a fiber or a task.
*
* @return N/A
*
*/
extern void nano_stack_init(struct nano_stack *stack, uint32_t *data);
/* methods for ISRs */
/**
*
* @brief Push data onto a stack (no context switch)
*
* This routine pushes a data item onto a stack object; it may be called from
* an ISR context. A fiber pending on the stack object will be
* made ready, but will NOT be scheduled to execute.
*
* @param stack Stack on which to interact
* @param data Data to push on stack
*
* @return N/A
*
*/
extern void nano_isr_stack_push(struct nano_stack *stack, uint32_t data);
/**
*
* @brief Pop data from a nanokernel stack
*
* Pop the first data word from a nanokernel stack object; it may be called
* from an ISR context.
*
* If the stack is not empty, a data word is popped and copied to the provided
* address <pData> and a non-zero value is returned. If the stack is empty,
* zero is returned.
*
* @param stack Stack on which to interact
* @param pData Container for data to pop
* @return 1 if stack is not empty, 0 otherwise
*
*/
extern int nano_isr_stack_pop(struct nano_stack *stack, uint32_t *data);
/* methods for fibers */
/**
*
* @brief Push data onto a stack (no context switch)
*
* This routine pushes a data item onto a stack object; it may be called from
* a fiber context. A fiber pending on the stack object will be
* made ready, but will NOT be scheduled to execute.
*
* @param stack Stack on which to interact
* @param data Data to push on stack
*
* @return N/A
*
*/
extern void nano_fiber_stack_push(struct nano_stack *stack, uint32_t data);
/**
*
* @brief Pop data from a nanokernel stack
*
* Pop the first data word from a nanokernel stack object; it may be called
* from a fiber context.
*
* If the stack is not empty, a data word is popped and copied to the provided
* address <pData> and a non-zero value is returned. If the stack is empty,
* zero is returned.
*
* @param stack Stack on which to interact
* @param pData Container for data to pop
*
* @return 1 if stack is not empty, 0 otherwise
*
*/
extern int nano_fiber_stack_pop(struct nano_stack *stack, uint32_t *data);
/**
*
* @brief Pop data from a nanokernel stack, wait if empty
*
* Pop the first data word from a nanokernel stack object; it can only be
* called from a fiber.
*
* If data is not available the calling fiber will pend until data is pushed
* onto the stack.
*
* @param stack Stack on which to interact
*
* @return the data popped from the stack
*
*/
extern uint32_t nano_fiber_stack_pop_wait(struct nano_stack *stack);
/* methods for tasks */
/**
*
* @brief Push data onto a nanokernel stack
*
* This routine pushes a data item onto a stack object; it may be called only
* from a task. A fiber pending on the stack object will be
* made ready, and will preempt the running task immediately.
*
* @param stack Stack on which to interact
* @param data Data to push on stack
*
* @return N/A
*/
extern void nano_task_stack_push(struct nano_stack *stack, uint32_t data);
/**
*
* @brief Pop data from a nanokernel stack
*
* Pop the first data word from a nanokernel stack object; it may be called
* from a task context.
*
* If the stack is not empty, a data word is popped and copied to the provided
* address <pData> and a non-zero value is returned. If the stack is empty,
* zero is returned.
*
* @param stack Stack on which to interact
* @param pData Container for data to pop
*
* @return 1 if stack is not empty, 0 otherwise
*/
extern int nano_task_stack_pop(struct nano_stack *stack, uint32_t *data);
/**
*
* @brief Pop data from a nanokernel stack, poll if empty
*
* Pop the first data word from a nanokernel stack; it can only be called
* from a task.
*
* If data is not available the calling task will poll until data is pushed
* onto the stack.
*
* @param stack Stack on which to interact
*
* @return the data popped from the stack
*/
extern uint32_t nano_task_stack_pop_wait(struct nano_stack *stack);
/* thread custom data APIs */
@ -978,23 +1153,152 @@ struct nano_timer {
void *userData;
};
/**
* @brief Initialize a nanokernel timer object
*
* This function initializes a nanokernel timer object structure.
*
* It may be called from either a fiber or task.
*
* The <userData> passed to this function must have enough space for a pointer
* in its first field, that may be overwritten when the timer expires, plus
* whatever data the user wishes to store and recover when the timer expires.
*
* @param timer Timer
* @param data User Data
* @return N/A
*/
extern void nano_timer_init(struct nano_timer *timer, void *data);
/* methods for fibers */
/**
*
* @brief Start a nanokernel timer from a fiber
*
* This function starts a previously initialized nanokernel timer object.
* The timer will expire in <ticks> system clock ticks.
*
* @param timer Timer
* @param ticks Number of ticks
*
* @return N/A
*/
extern void nano_fiber_timer_start(struct nano_timer *timer, int ticks);
/**
* @brief Make the current fiber check for a timer expiry
*
* This function will check if a timer has expired. The timer must
* have been initialized by nano_timer_init() and started via either
* nano_fiber_timer_start() or nano_task_timer_start() first.
*
* @param timer Timer to check
*
* @return pointer to timer initialization data, or NULL if timer not expired
*/
extern void *nano_fiber_timer_test(struct nano_timer *timer);
/**
*
* @brief Make the current fiber wait for a timer to expire
*
* This function will pend on a timer if it hasn't expired yet. The timer must
* have been initialized by nano_timer_init() and started via either
* nano_fiber_timer_start() or nano_task_timer_start() first and must not
* have been stopped via nano_task_timer_stop() or nano_fiber_timer_stop().
*
* @param timer Timer to pend on
*
* @return pointer to timer initialization data
*
*/
extern void *nano_fiber_timer_wait(struct nano_timer *timer);
/**
* @brief Stop a nanokernel timer from a fiber
*
* This function stops a previously started nanokernel timer object.
*
* @param timer Timer to stop
*
* @return N/A
*/
extern void nano_fiber_timer_stop(struct nano_timer *timer);
/* methods for tasks */
/**
* @brief Start a nanokernel timer from a task
*
* This function starts a previously initialized nanokernel timer object.
* The timer will expire in <ticks> system clock ticks.
*
* @param timer Timer
* @param ticks Number of ticks
*
* @return N/A
*/
extern void nano_task_timer_start(struct nano_timer *timer, int ticks);
/**
* @brief Make the current task check for a timer expiry
*
* This function will check if a timer has expired. The timer must
* have been initialized by nano_timer_init() and started via either
* nano_fiber_timer_start() or nano_task_timer_start() first.
*
* @param timer Timer to check
*
* @return pointer to timer initialization data, or NULL if timer not expired
*/
extern void *nano_task_timer_test(struct nano_timer *timer);
/**
*
* @brief Make the current task wait for a timer to expire
*
* This function will pend on a timer if it hasn't expired yet. The timer must
* have been initialized by nano_timer_init() and started via either
* nano_fiber_timer_start() or nano_task_timer_start() first and must not
* have been stopped via nano_task_timer_stop() or nano_fiber_timer_stop().
*
* @param timer Timer to pend on
*
* @return pointer to timer initialization data
*
*/
extern void *nano_task_timer_wait(struct nano_timer *timer);
/**
* @brief Stop a nanokernel timer from a task
*
* This function stops a previously started nanokernel timer object.
*
* @param timer Timer to stop
*
* @return N/A
*/
extern void nano_task_timer_stop(struct nano_timer *timer);
/* methods for tasks and fibers for handling time and ticks */
/**
*
* @brief Return the current system tick count
*
* @return the current system tick count
*
*/
extern int64_t nano_tick_get(void);
/**
*
* @brief Return the lower part of the current system tick count
*
* @return the current system tick count
*
*/
extern uint32_t nano_tick_get_32(void);
/**
@ -1004,7 +1308,24 @@ extern uint32_t nano_tick_get_32(void);
*/
extern uint32_t nano_cycle_get_32(void);
/**
*
* @brief Return number of ticks since a reference time
*
* @param reftime Reference time
*
* @return tick count since reference time; undefined for first invocation
*/
extern int64_t nano_tick_delta(int64_t *reftime);
/**
*
* @brief Return 32-bit number of ticks since a reference time
*
* @param reftime Reference time
*
* @return 32-bit tick count since reference time; undefined for first invocation
*/
extern uint32_t nano_tick_delta_32(int64_t *reftime);
#ifdef __cplusplus

View file

@ -42,30 +42,12 @@ tasks or fibers.
#include <nano_private.h>
#include <misc/printk.h>
/**
*
* @brief Return the currently executing thread
*
* This routine returns a pointer to the thread control block of the currently
* executing thread. It is cast to a nano_thread_id_t for use publicly.
*
* @return nano_thread_id_t of the currently executing thread.
*/
nano_thread_id_t sys_thread_self_get(void)
{
return _nanokernel.current;
}
/**
*
* @brief Return the type of the currently executing thread
*
* This routine returns the type of thread currently executing.
*
* @return nano_context_type_t of the currently executing thread.
*/
nano_context_type_t sys_execution_context_type_get(void)
{
if (_IS_IN_ISR())
@ -87,7 +69,6 @@ nano_context_type_t sys_execution_context_type_get(void)
*
* @return N/A
*/
void _thread_essential_set(void)
{
_nanokernel.current->flags |= ESSENTIAL;
@ -103,7 +84,6 @@ void _thread_essential_set(void)
*
* @return N/A
*/
void _thread_essential_clear(void)
{
_nanokernel.current->flags &= ~ESSENTIAL;
@ -119,7 +99,6 @@ void _thread_essential_clear(void)
*
* @return Non-zero if specified thread is essential, zero if it is not
*/
int _is_thread_essential(struct tcs *pCtx /* pointer to thread */
)
{
@ -140,7 +119,6 @@ int _is_thread_essential(struct tcs *pCtx /* pointer to thread */
*
* @return N/A
*/
void sys_thread_custom_data_set(void *value)
{
_nanokernel.current->custom_data = value;
@ -154,7 +132,6 @@ void sys_thread_custom_data_set(void *value)
*
* @return current handle value
*/
void *sys_thread_custom_data_get(void)
{
return _nanokernel.current->custom_data;
@ -175,10 +152,7 @@ void *sys_thread_custom_data_get(void)
* of threads does not change in mid-operation.
*
* @return N/A
*
* \NOMANUAL
*/
void _thread_exit(struct tcs *thread)
{
/*
@ -213,16 +187,14 @@ void _thread_exit(struct tcs *thread)
* passes it three arguments. It also handles graceful termination of the
* task or fiber if the entry point function ever returns.
*
* INTERNAL
* @internal
* The 'noreturn' attribute is applied to this function so that the compiler
* can dispense with generating the usual preamble that is only required for
* functions that actually return.
*
* @return Does not return
*
* \NOMANUAL
*/
FUNC_NORETURN void _thread_entry(
_thread_entry_t pEntry, /* address of app entry point function */
_thread_arg_t parameter1, /* 1st arg to app entry point function */

View file

@ -117,11 +117,12 @@ void _fiber_start(char *pStack,
* otherwise swap into the newly created fiber
*/
if ((_nanokernel.current->flags & TASK) == TASK)
if ((_nanokernel.current->flags & TASK) == TASK) {
_Swap(imask);
else
} else {
irq_unlock(imask);
}
}
void fiber_yield(void)
{
@ -137,9 +138,10 @@ void fiber_yield(void)
_nano_fiber_schedule(_nanokernel.current);
_Swap(imask);
} else
} else {
irq_unlock(imask);
}
}
/**
*

View file

@ -1,5 +1,3 @@
/* nanokernel fixed-size stack object */
/*
* Copyright (c) 2010-2015 Wind River Systems, Inc.
*
@ -30,41 +28,28 @@
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
DESCRIPTION
This module provides the nanokernel stack object implementation, including
the following APIs:
nano_stack_init
nano_fiber_stack_push, nano_task_stack_push, nano_isr_stack_push
nano_fiber_stack_pop, nano_task_stack_pop, nano_isr_stack_pop
nano_fiber_stack_pop_wait, nano_task_stack_pop_wait
INTERNAL
In some cases the compiler "alias" attribute is used to map two or more
APIs to the same function, since they have identical implementations.
/**
* @brief Nanokernel fixed-size stack object
*
* This module provides the nanokernel stack object implementation, including
* the following APIs:
*
* nano_stack_init
* nano_fiber_stack_push, nano_task_stack_push, nano_isr_stack_push
* nano_fiber_stack_pop, nano_task_stack_pop, nano_isr_stack_pop
* nano_fiber_stack_pop_wait, nano_task_stack_pop_wait
*
* @internal
* In some cases the compiler "alias" attribute is used to map two or more
* APIs to the same function, since they have identical implementations.
* @endinternal
*
*/
#include <nano_private.h>
#include <toolchain.h>
#include <sections.h>
/**
*
* @brief Initialize a nanokernel stack object
*
* This function initializes a nanokernel stack object structure.
*
* It may be called from either a fiber or a task.
*
* @return N/A
*
* INTERNAL
* Although the existing implementation will support invocation from an ISR
* context, for future flexibility, this API will be restricted from ISR
* level invocation.
*/
void nano_stack_init(
struct nano_stack *stack, /* stack to initialize */
@ -86,19 +71,18 @@ FUNC_ALIAS(_stack_push_non_preemptible, nano_fiber_stack_push, void);
* either a fiber or ISR context. A fiber pending on the stack object will be
* made ready, but will NOT be scheduled to execute.
*
* @param stack Stack on which to interact
* @param data Data to push on stack
* @return N/A
*
* INTERNAL
* @internal
* This function is capable of supporting invocations from both a fiber and an
* ISR context. However, the nano_isr_stack_push and nano_fiber_stack_push
* aliases are created to support any required implementation differences in
* the future without introducing a source code migration issue.
* @endinternal
*/
void _stack_push_non_preemptible(
struct nano_stack *stack, /* stack on which to interact */
uint32_t data /* data to push on stack */
)
void _stack_push_non_preemptible(struct nano_stack *stack, uint32_t data)
{
struct tcs *tcs;
unsigned int imask;
@ -118,21 +102,8 @@ void _stack_push_non_preemptible(
irq_unlock(imask);
}
/**
*
* @brief Push data onto a nanokernel stack
*
* This routine pushes a data item onto a stack object; it may be called only
* from a task. A fiber pending on the stack object will be
* made ready, and will preempt the running task immediately.
*
* @return N/A
*/
void nano_task_stack_push(
struct nano_stack *stack, /* stack on which to interact */
uint32_t data /* data to push on stack */
)
void nano_task_stack_push(struct nano_stack *stack, uint32_t data)
{
struct tcs *tcs;
unsigned int imask;
@ -169,20 +140,20 @@ FUNC_ALIAS(_stack_pop, nano_task_stack_pop, int);
* address <pData> and a non-zero value is returned. If the stack is empty,
* zero is returned.
*
* @param stack Stack to operate on
* @param pData Container for data to pop
*
* @return 1 if stack is not empty, 0 otherwise
*
* INTERNAL
* @internal
* This function is capable of supporting invocations from fiber, task, and
* ISR contexts. However, the nano_isr_stack_pop, nano_task_stack_pop, and
* nano_fiber_stack_pop aliases are created to support any required
* implementation differences in the future without intoducing a source code
* migration issue.
* @endinternal
*/
int _stack_pop(
struct nano_stack *stack, /* stack on which to interact */
uint32_t *pData /* container for data to pop */
)
int _stack_pop(struct nano_stack *stack, uint32_t *pData)
{
unsigned int imask;
int rv = 0;
@ -200,26 +171,15 @@ int _stack_pop(
}
/**
*
* @brief Pop data from a nanokernel stack, wait if empty
*
* Pop the first data word from a nanokernel stack object; it can only be
* called from a fiber.
*
* If data is not available the calling fiber will pend until data is pushed
* onto the stack.
*
* @return the data popped from the stack
*
* INTERNAL
* @internal
* There exists a separate nano_task_stack_pop_wait() implementation since a
* task cannot pend on a nanokernel object. Instead tasks will poll the
* the stack object.
* @endinternal
*/
uint32_t nano_fiber_stack_pop_wait(
struct nano_stack *stack /* stack on which to interact */
)
uint32_t nano_fiber_stack_pop_wait(struct nano_stack *stack)
{
uint32_t data;
unsigned int imask;
@ -238,22 +198,8 @@ uint32_t nano_fiber_stack_pop_wait(
return data;
}
/**
*
* @brief Pop data from a nanokernel stack, poll if empty
*
* Pop the first data word from a nanokernel stack; it can only be called
* from a task.
*
* If data is not available the calling task will poll until data is pushed
* onto the stack.
*
* @return the data popped from the stack
*/
uint32_t nano_task_stack_pop_wait(
struct nano_stack *stack /* stack on which to interact */
)
uint32_t nano_task_stack_pop_wait(struct nano_stack *stack)
{
uint32_t data;
unsigned int imask;

View file

@ -63,7 +63,6 @@ int64_t _nano_ticks = 0;
* @return the current system tick count
*
*/
uint32_t nano_tick_get_32(void)
{
return (uint32_t)_nano_ticks;
@ -76,7 +75,6 @@ uint32_t nano_tick_get_32(void)
* @return the current system tick count
*
*/
int64_t nano_tick_get(void)
{
int64_t tmp_nano_ticks;
@ -147,18 +145,11 @@ static ALWAYS_INLINE int64_t _nano_tick_delta(int64_t *reftime)
*
* @return tick count since reference time; undefined for first invocation
*/
int64_t nano_tick_delta(int64_t *reftime)
{
return _nano_tick_delta(reftime);
}
/**
*
* @brief Return 32-bit number of ticks since a reference time
*
* @return 32-bit tick count since reference time; undefined for first invocation
*/
uint32_t nano_tick_delta_32(int64_t *reftime)
{

View file

@ -34,52 +34,24 @@
struct nano_timer *_nano_timer_list = NULL;
/**
*
* @brief Initialize a nanokernel timer object
*
* This function initializes a nanokernel timer object structure.
*
* It may be called from either a fiber or task.
*
* The <userData> passed to this function must have enough space for a pointer
* in its first field, that may be overwritten when the timer expires, plus
* whatever data the user wishes to store and recover when the timer expires.
*
* @return N/A
*
*/
void nano_timer_init(struct nano_timer *timer, void *userData)
void nano_timer_init(struct nano_timer *timer, void *data)
{
nano_lifo_init(&timer->lifo);
timer->userData = userData;
timer->userData = data;
}
/**
*
* @brief Start a nanokernel timer from a fiber
*
* This function starts a previously initialized nanokernel timer object.
* The timer will expire in <ticks> system clock ticks.
*
* @return N/A
*
*/
FUNC_ALIAS(_timer_start, nano_fiber_timer_start, void);
/**
*
* @brief Start a nanokernel timer from a task
*
* This function starts a previously initialized nanokernel timer object.
* The timer will expire in <ticks> system clock ticks.
*
* @return N/A
*
*/
FUNC_ALIAS(_timer_start, nano_task_timer_start, void);
/**
@ -90,10 +62,7 @@ FUNC_ALIAS(_timer_start, nano_task_timer_start, void);
* The timer will expire in <ticks> system clock ticks.
*
* @return N/A
*
* NOMANUAL
*/
void _timer_start(struct nano_timer *timer, /* timer to start */
int ticks /* number of system ticks
before expiry */
@ -128,18 +97,13 @@ void _timer_start(struct nano_timer *timer, /* timer to start */
}
/**
*
* @brief Stop a nanokernel timer (generic implementation)
*
* This function stops a previously started nanokernel timer object.
*
* @param timer Timer to stop
* @return N/A
*
* NOMANUAL
*/
static void _timer_stop(struct nano_timer *timer /* timer to stop */
)
static void _timer_stop(struct nano_timer *timer)
{
unsigned int imask;
struct nano_timer *cur;
@ -176,18 +140,8 @@ static void _timer_stop(struct nano_timer *timer /* timer to stop */
irq_unlock(imask);
}
/**
*
* @brief Stop a nanokernel timer from a fiber
*
* This function stops a previously started nanokernel timer object.
*
* @return N/A
*
*/
void nano_fiber_timer_stop(struct nano_timer *timer /* timer to stop */
)
void nano_fiber_timer_stop(struct nano_timer *timer)
{
_timer_stop(timer);
@ -198,18 +152,7 @@ void nano_fiber_timer_stop(struct nano_timer *timer /* timer to stop */
}
}
/**
*
* @brief Stop a nanokernel timer from a task
*
* This function stops a previously started nanokernel timer object.
*
* @return N/A
*
*/
void nano_task_timer_stop(struct nano_timer *timer /* timer to stop */
)
void nano_task_timer_stop(struct nano_timer *timer)
{
_timer_stop(timer);
@ -220,76 +163,24 @@ void nano_task_timer_stop(struct nano_timer *timer /* timer to stop */
}
}
/**
*
* @brief Make the current fiber check for a timer expiry
*
* This function will check if a timer has expired. The timer must
* have been initialized by nano_timer_init() and started via either
* nano_fiber_timer_start() or nano_task_timer_start() first.
*
* @return pointer to timer initialization data, or NULL if timer not expired
*
*/
void *nano_fiber_timer_test(struct nano_timer *timer /* timer to check */
)
void *nano_fiber_timer_test(struct nano_timer *timer)
{
return nano_fiber_lifo_get(&timer->lifo);
}
/**
*
* @brief Make the current fiber wait for a timer to expire
*
* This function will pend on a timer if it hasn't expired yet. The timer must
* have been initialized by nano_timer_init() and started via either
* nano_fiber_timer_start() or nano_task_timer_start() first and must not
* have been stopped via nano_task_timer_stop() or nano_fiber_timer_stop().
*
* @return pointer to timer initialization data
*
*/
void *nano_fiber_timer_wait(struct nano_timer *timer /* timer to pend on */
)
void *nano_fiber_timer_wait(struct nano_timer *timer)
{
return nano_fiber_lifo_get_wait(&timer->lifo);
}
/**
*
* @brief Make the current task check for a timer expiry
*
* This function will check if a timer has expired. The timer must
* have been initialized by nano_timer_init() and started via either
* nano_fiber_timer_start() or nano_task_timer_start() first.
*
* @return pointer to timer initialization data, or NULL if timer not expired
*
*/
void *nano_task_timer_test(struct nano_timer *timer /* timer to check */
)
void *nano_task_timer_test(struct nano_timer *timer)
{
return nano_task_lifo_get(&timer->lifo);
}
/**
*
* @brief Make the current task wait for a timer to expire
*
* This function will pend on a timer if it hasn't expired yet. The timer must
* have been initialized by nano_timer_init() and started via either
* nano_fiber_timer_start() or nano_task_timer_start() first and must not
* have been stopped via nano_task_timer_stop() or nano_fiber_timer_stop().
*
* @return pointer to timer initialization data
*
*/
void *nano_task_timer_wait(struct nano_timer *timer /* timer to pend on */
)
void *nano_task_timer_wait(struct nano_timer *timer)
{
return nano_task_lifo_get_wait(&timer->lifo);
}