First commit
Signed-off-by: <inaky.perez-gonzalez@intel.com>
This commit is contained in:
commit
8ddf82cf70
1063 changed files with 163901 additions and 0 deletions
473
kernel/microkernel/k_task.c
Normal file
473
kernel/microkernel/k_task.c
Normal file
|
@ -0,0 +1,473 @@
|
|||
/* task kernel services */
|
||||
|
||||
/*
|
||||
* Copyright (c) 1997-2010, 2013-2015 Wind River Systems, Inc.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1) Redistributions of source code must retain the above copyright notice,
|
||||
* this list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2) Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* 3) Neither the name of Wind River Systems nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software without
|
||||
* specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||||
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
* POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
|
||||
#include <microkernel.h>
|
||||
#include <nanokernel.h>
|
||||
#include <nanokernel/cpu.h>
|
||||
#include <toolchain.h>
|
||||
#include <sections.h>
|
||||
|
||||
#include <minik.h>
|
||||
#include <nanok.h>
|
||||
#include <ktask.h>
|
||||
|
||||
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* reset_state_bit - reset the specified task state bits
|
||||
*
|
||||
* This routine resets the specified task state bits. When a task's state bits
|
||||
* are zero, the task may be scheduled to run. The tasks's state bits are a
|
||||
* bitmask of the TF_xxx bits. Each TF_xxx bit indicates a reason why the task
|
||||
* must not be scheduled to run.
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void reset_state_bit(struct k_proc *X, /* ptr to task */
|
||||
uint32_t bits /* bitmask of TF_xxx
|
||||
bits to reset */
|
||||
)
|
||||
{
|
||||
uint32_t f_old = X->State; /* old state bits */
|
||||
uint32_t f_new = f_old & ~bits; /* new state bits */
|
||||
|
||||
X->State = f_new; /* Update task's state bits */
|
||||
|
||||
if ((f_old != 0) && (f_new == 0)) {
|
||||
/*
|
||||
* The task may now be scheduled to run (but could not
|
||||
* previously) as all the TF_xxx bits are clear. It must
|
||||
* be added to the list of schedulable tasks.
|
||||
*/
|
||||
|
||||
#ifndef LITE
|
||||
struct k_tqhd *H = K_PrioList + X->Prio;
|
||||
#else
|
||||
struct k_tqhd *H = K_PrioList;
|
||||
#endif
|
||||
|
||||
X->Forw = NULL;
|
||||
H->Tail->Forw = X;
|
||||
H->Tail = X;
|
||||
K_PrioBitMap[X->Prio >> 5] |= (1 << (X->Prio & 0x1F));
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TASK_MONITOR
|
||||
f_new ^= f_old;
|
||||
if ((K_monitor_mask & MON_STATE) && (f_new)) {
|
||||
/*
|
||||
* Task monitoring is enabled and the new state bits are
|
||||
* different than the old state bits.
|
||||
*
|
||||
* <f_new> now contains the bits that are different.
|
||||
*/
|
||||
|
||||
K_monitor_task(X, f_new | MO_STBIT0);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* set_state_bit - set specified task state bits
|
||||
*
|
||||
* This routine sets the specified task state bits. When a task's state bits
|
||||
* are non-zero, the task will not be scheduled to run. The task's state bits
|
||||
* are a bitmask of the TF_xxx bits. Each TF_xxx bit indicates a reason why
|
||||
* the task must not be scheduled to run.
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void set_state_bit(
|
||||
struct k_proc *X, /* ptr to task */
|
||||
uint32_t bits /* bitmask of TF_xxx bits to set */
|
||||
)
|
||||
{
|
||||
uint32_t f_old = X->State; /* old state bits */
|
||||
uint32_t f_new = f_old | bits; /* new state bits */
|
||||
|
||||
X->State = f_new; /* Update task's state bits */
|
||||
|
||||
if ((f_old == 0) && (f_new != 0)) {
|
||||
/*
|
||||
* The task could have been scheduled to run ([State] was 0)
|
||||
* but can not be scheduled to run anymore at least one TF_xxx
|
||||
* bit has been set. Remove it from the list of schedulable
|
||||
* tasks.
|
||||
*/
|
||||
#if defined(__GNUC__)
|
||||
#if defined(VXMICRO_ARCH_arm)
|
||||
/*
|
||||
* Avoid bad code generation by certain gcc toolchains for ARM
|
||||
* when an optimization setting of -O2 or above is used.
|
||||
*
|
||||
* Specifically, this issue has been seen with ARM gcc version
|
||||
* 4.6.3 (Sourcery CodeBench Lite 2012.03-56): The 'volatile'
|
||||
* attribute is added to the following variable to prevent it
|
||||
* from being lost--otherwise the register that holds its value
|
||||
* is reused, but the compiled code uses it later on as if it
|
||||
* was still that variable.
|
||||
*/
|
||||
volatile
|
||||
#endif
|
||||
#endif
|
||||
struct k_tqhd *H = K_PrioList + X->Prio;
|
||||
struct k_proc *Y = (struct k_proc *)(&H->Head);
|
||||
|
||||
while (Y->Forw != X) {
|
||||
Y = Y->Forw;
|
||||
}
|
||||
|
||||
Y->Forw = X->Forw;
|
||||
|
||||
if (H->Tail == X) {
|
||||
H->Tail = Y;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check that the list is empty
|
||||
* It means, H->Head == NULL
|
||||
*/
|
||||
|
||||
if (H->Head == NULL) {
|
||||
K_PrioBitMap[X->Prio >> 5] &= ~(1 << (X->Prio & 0x1F));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef CONFIG_TASK_MONITOR
|
||||
f_new ^= f_old;
|
||||
if ((K_monitor_mask & MON_STATE) && (f_new)) {
|
||||
/*
|
||||
* Task monitoring is enabled and the new state bits are
|
||||
* different than the old state bits.
|
||||
*
|
||||
* <f_new> now contains the bits that are different.
|
||||
*/
|
||||
|
||||
K_monitor_task(X, f_new | MO_STBIT1);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* abort_task - abort a task
|
||||
*
|
||||
* This routine aborts the specified task.
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void abort_task(struct k_proc *X)
|
||||
{
|
||||
|
||||
/* Do normal context exit cleanup */
|
||||
|
||||
_ContextExitRtn((tCCS *)X->workspace);
|
||||
|
||||
/* Set TF_TERM and TF_STOP state flags */
|
||||
|
||||
set_state_bit(X, TF_STOP | TF_TERM);
|
||||
|
||||
/* Invoke abort function, if there is one */
|
||||
|
||||
if (X->fabort != NULL) {
|
||||
X->fabort();
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* task_abort_handler_set - install an abort handler
|
||||
*
|
||||
* This routine installs an abort handler for the calling task.
|
||||
*
|
||||
* The abort handler is run when the calling task is aborted by a _TaskAbort()
|
||||
* or task_group_abort() call.
|
||||
*
|
||||
* Each call to task_abort_handler_set() replaces the previously installed
|
||||
* handler.
|
||||
*
|
||||
* To remove an abort handler, set the parameter to NULL as below:
|
||||
* task_abort_handler_set (NULL)
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void task_abort_handler_set(void (*func)(void) /* abort handler */
|
||||
)
|
||||
{
|
||||
K_Task->fabort = func;
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* K_taskop - handle a task operation request
|
||||
*
|
||||
* This routine handles any one of the following task operation requests:
|
||||
* starting either a kernel or user task, aborting a task, suspending a task,
|
||||
* resuming a task, blocking a task or unblocking a task
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void K_taskop(struct k_args *A)
|
||||
{
|
||||
ktask_t Tid = A->Args.g1.task;
|
||||
struct k_proc *X = K_TaskList + OBJ_INDEX(Tid);
|
||||
|
||||
switch (A->Args.g1.opt) {
|
||||
case TASK_START:
|
||||
start_task(X, X->fstart);
|
||||
break;
|
||||
case TASK_ABORT:
|
||||
abort_task(X);
|
||||
break;
|
||||
case TASK_SUSPEND:
|
||||
set_state_bit(X, TF_SUSP);
|
||||
break;
|
||||
case TASK_RESUME:
|
||||
reset_state_bit(X, TF_SUSP);
|
||||
break;
|
||||
case TASK_BLOCK:
|
||||
set_state_bit(X, TF_BLCK);
|
||||
break;
|
||||
case TASK_UNBLOCK:
|
||||
reset_state_bit(X, TF_BLCK);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* _task_ioctl - task operations
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void _task_ioctl(ktask_t task, /* task on which to operate */
|
||||
int opt /* task operation */
|
||||
)
|
||||
{
|
||||
struct k_args A;
|
||||
|
||||
A.Comm = TSKOP;
|
||||
A.Args.g1.task = task;
|
||||
A.Args.g1.opt = opt;
|
||||
KERNEL_ENTRY(&A);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* K_groupop - handle task group operation request
|
||||
*
|
||||
* This routine handles any one of the following task group operations requests:
|
||||
* starting either kernel or user tasks, aborting tasks, suspending tasks,
|
||||
* resuming tasks, blocking tasks or unblocking tasks
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void K_groupop(struct k_args *A)
|
||||
{
|
||||
ktask_group_t grp = A->Args.g1.group;
|
||||
int opt = A->Args.g1.opt;
|
||||
int i;
|
||||
struct k_proc *X;
|
||||
|
||||
#ifdef CONFIG_TASK_DEBUG
|
||||
if (opt == GROUP_TASK_BLOCK)
|
||||
K_DebugHalt = 1;
|
||||
if (opt == GROUP_TASK_UNBLOCK)
|
||||
K_DebugHalt = 0;
|
||||
#endif
|
||||
|
||||
for (i = 0, X = K_TaskList; i < K_TaskCount; i++, X++) {
|
||||
if (X->Group & grp) {
|
||||
switch (opt) {
|
||||
case GROUP_TASK_START:
|
||||
start_task(X, X->fstart);
|
||||
break;
|
||||
case GROUP_TASK_ABORT:
|
||||
abort_task(X);
|
||||
break;
|
||||
case GROUP_TASK_SUSPEND:
|
||||
set_state_bit(X, TF_SUSP);
|
||||
break;
|
||||
case GROUP_TASK_RESUME:
|
||||
reset_state_bit(X, TF_SUSP);
|
||||
break;
|
||||
case GROUP_TASK_BLOCK:
|
||||
set_state_bit(X, TF_BLCK);
|
||||
break;
|
||||
case GROUP_TASK_UNBLOCK:
|
||||
reset_state_bit(X, TF_BLCK);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* _task_group_ioctl - task group operations
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void _task_group_ioctl(ktask_group_t group, /* task group */
|
||||
int opt /* operation */
|
||||
)
|
||||
{
|
||||
struct k_args A;
|
||||
|
||||
A.Comm = GRPOP;
|
||||
A.Args.g1.group = group;
|
||||
A.Args.g1.opt = opt;
|
||||
KERNEL_ENTRY(&A);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* K_set_prio - handle task set priority request
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void K_set_prio(struct k_args *A)
|
||||
{
|
||||
ktask_t Tid = A->Args.g1.task;
|
||||
struct k_proc *X = K_TaskList + OBJ_INDEX(Tid);
|
||||
|
||||
set_state_bit(X, TF_PRIO);
|
||||
X->Prio = A->Args.g1.prio;
|
||||
reset_state_bit(X, TF_PRIO);
|
||||
|
||||
if (A->Srce)
|
||||
FREEARGS(A);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* task_priority_set - set the priority of a task
|
||||
*
|
||||
* This routine changes the priority of the specified task.
|
||||
*
|
||||
* The call has immediate effect. If the calling task is no longer the highest
|
||||
* priority runnable task, a task switch occurs.
|
||||
*
|
||||
* The priority should be specified in the range 0 to 62. 0 is the highest
|
||||
* priority.
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void task_priority_set(ktask_t task, /* task whose priority is to be set */
|
||||
kpriority_t prio /* new priority */
|
||||
)
|
||||
{
|
||||
struct k_args A;
|
||||
|
||||
A.Comm = SPRIO;
|
||||
A.Args.g1.task = task;
|
||||
A.Args.g1.prio = prio;
|
||||
KERNEL_ENTRY(&A);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* K_yield - handle task yield request
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void K_yield(struct k_args *A)
|
||||
{
|
||||
struct k_tqhd *H = K_PrioList + K_Task->Prio;
|
||||
struct k_proc *X = K_Task->Forw;
|
||||
|
||||
ARG_UNUSED(A);
|
||||
if (X && H->Head == K_Task) {
|
||||
K_Task->Forw = NULL;
|
||||
H->Tail->Forw = K_Task;
|
||||
H->Tail = K_Task;
|
||||
H->Head = X;
|
||||
}
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* task_yield - yield the CPU to another task
|
||||
*
|
||||
* This routine yields the processor to the next equal priority task that is
|
||||
* runnable. Using task_yield(), it is possible to achieve the effect of round
|
||||
* robin scheduling. If no task with the same priority is runnable then no task
|
||||
* switch occurs and the calling task resumes execution.
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void task_yield(void)
|
||||
{
|
||||
struct k_args A;
|
||||
|
||||
A.Comm = YIELD;
|
||||
KERNEL_ENTRY(&A);
|
||||
}
|
||||
|
||||
/*******************************************************************************
|
||||
*
|
||||
* task_entry_set - set the entry point of a task
|
||||
*
|
||||
* This routine sets the entry point of a task to a given routine. It is only
|
||||
* needed if the entry point is different from that specified in the project
|
||||
* file. It must be called before task_start() to have any effect, so it
|
||||
* cannot work with members of the EXE group or of any group that automatically
|
||||
* starts when the application is loaded.
|
||||
*
|
||||
* The routine is executed when the task is started
|
||||
*
|
||||
* RETURNS: N/A
|
||||
*/
|
||||
|
||||
void task_entry_set(ktask_t task, /* task */
|
||||
void (*func)(void) /* entry point */
|
||||
)
|
||||
{
|
||||
K_TaskList[OBJ_INDEX(task)].fstart = func;
|
||||
}
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue