kernel: support log system for fatal errors

We introduce a new z_fatal_print() API and replace all
occurrences of exception handling code to use it.
This routes messages to the logging subsystem if enabled.
Otherwise, messages are sent to printk().

Signed-off-by: Andrew Boie <andrew.p.boie@intel.com>
This commit is contained in:
Andrew Boie 2019-07-15 22:03:56 -07:00 committed by Andrew Boie
commit 8a9e8e0cd7
15 changed files with 289 additions and 270 deletions

View file

@ -204,7 +204,7 @@ endmenu
config ARC_EXCEPTION_DEBUG config ARC_EXCEPTION_DEBUG
bool "Unhandled exception debugging information" bool "Unhandled exception debugging information"
default n default n
depends on PRINTK depends on PRINTK || LOG
help help
Print human-readable information about exception vectors, cause codes, Print human-readable information about exception vectors, cause codes,
and parameters, at a cost of code/data size for the human-readable and parameters, at a cost of code/data size for the human-readable

View file

@ -16,13 +16,12 @@
#include <offsets_short.h> #include <offsets_short.h>
#include <toolchain.h> #include <toolchain.h>
#include <arch/cpu.h> #include <arch/cpu.h>
#include <sys/printk.h>
#include <logging/log_ctrl.h> #include <logging/log_ctrl.h>
void z_arc_fatal_error(unsigned int reason, const NANO_ESF *esf) void z_arc_fatal_error(unsigned int reason, const NANO_ESF *esf)
{ {
if (reason == K_ERR_CPU_EXCEPTION) { if (reason == K_ERR_CPU_EXCEPTION) {
printk("Faulting instruction address = 0x%lx\n", z_fatal_print("Faulting instruction address = 0x%lx",
z_arc_v2_aux_reg_read(_ARC_V2_ERET)); z_arc_v2_aux_reg_read(_ARC_V2_ERET));
} }

View file

@ -17,7 +17,6 @@
#include <kernel.h> #include <kernel.h>
#include <kernel_structs.h> #include <kernel_structs.h>
#include <sys/printk.h>
#include <exc_handle.h> #include <exc_handle.h>
#include <logging/log_ctrl.h> #include <logging/log_ctrl.h>
@ -130,33 +129,25 @@ static u32_t z_check_thread_stack_fail(const u32_t fault_addr, u32_t sp)
* These codes and parameters do not have associated* names in * These codes and parameters do not have associated* names in
* the technical manual, just switch on the values in Table 6-5 * the technical manual, just switch on the values in Table 6-5
*/ */
static void dump_protv_access_err(u32_t parameter) static const char *get_protv_access_err(u32_t parameter)
{ {
switch (parameter) { switch (parameter) {
case 0x1: case 0x1:
printk("code protection scheme"); return "code protection scheme";
break;
case 0x2: case 0x2:
printk("stack checking scheme"); return "stack checking scheme";
break;
case 0x4: case 0x4:
printk("MPU"); return "MPU";
break;
case 0x8: case 0x8:
printk("MMU"); return "MMU";
break;
case 0x10: case 0x10:
printk("NVM"); return "NVM";
break;
case 0x24: case 0x24:
printk("Secure MPU"); return "Secure MPU";
break;
case 0x44: case 0x44:
printk("Secure MPU with SID mismatch"); return "Secure MPU with SID mismatch";
break;
default: default:
printk("unknown"); return "unknown";
break;
} }
} }
@ -164,32 +155,32 @@ static void dump_protv_exception(u32_t cause, u32_t parameter)
{ {
switch (cause) { switch (cause) {
case 0x0: case 0x0:
printk("Instruction fetch violation: "); z_fatal_print("Instruction fetch violation (%s)",
dump_protv_access_err(parameter); get_protv_access_err(parameter));
break; break;
case 0x1: case 0x1:
printk("Memory read protection violation: "); z_fatal_print("Memory read protection violation (%s)",
dump_protv_access_err(parameter); get_protv_access_err(parameter));
break; break;
case 0x2: case 0x2:
printk("Memory write protection violation: "); z_fatal_print("Memory write protection violation (%s)",
dump_protv_access_err(parameter); get_protv_access_err(parameter));
break; break;
case 0x3: case 0x3:
printk("Memory read-modify-write violation: "); z_fatal_print("Memory read-modify-write violation (%s)",
dump_protv_access_err(parameter); get_protv_access_err(parameter));
break; break;
case 0x10: case 0x10:
printk("Normal vector table in secure memory"); z_fatal_print("Normal vector table in secure memory");
break; break;
case 0x11: case 0x11:
printk("NS handler code located in S memory"); z_fatal_print("NS handler code located in S memory");
break; break;
case 0x12: case 0x12:
printk("NSC Table Range Violation"); z_fatal_print("NSC Table Range Violation");
break; break;
default: default:
printk("unknown"); z_fatal_print("unknown");
break; break;
} }
} }
@ -198,46 +189,46 @@ static void dump_machine_check_exception(u32_t cause, u32_t parameter)
{ {
switch (cause) { switch (cause) {
case 0x0: case 0x0:
printk("double fault"); z_fatal_print("double fault");
break; break;
case 0x1: case 0x1:
printk("overlapping TLB entries"); z_fatal_print("overlapping TLB entries");
break; break;
case 0x2: case 0x2:
printk("fatal TLB error"); z_fatal_print("fatal TLB error");
break; break;
case 0x3: case 0x3:
printk("fatal cache error"); z_fatal_print("fatal cache error");
break; break;
case 0x4: case 0x4:
printk("internal memory error on instruction fetch"); z_fatal_print("internal memory error on instruction fetch");
break; break;
case 0x5: case 0x5:
printk("internal memory error on data fetch"); z_fatal_print("internal memory error on data fetch");
break; break;
case 0x6: case 0x6:
printk("illegal overlapping MPU entries"); z_fatal_print("illegal overlapping MPU entries");
if (parameter == 0x1) { if (parameter == 0x1) {
printk(" (jump and branch target)"); z_fatal_print(" - jump and branch target");
} }
break; break;
case 0x10: case 0x10:
printk("secure vector table not located in secure memory"); z_fatal_print("secure vector table not located in secure memory");
break; break;
case 0x11: case 0x11:
printk("NSC jump table not located in secure memory"); z_fatal_print("NSC jump table not located in secure memory");
break; break;
case 0x12: case 0x12:
printk("secure handler code not located in secure memory"); z_fatal_print("secure handler code not located in secure memory");
break; break;
case 0x13: case 0x13:
printk("NSC target address not located in secure memory"); z_fatal_print("NSC target address not located in secure memory");
break; break;
case 0x80: case 0x80:
printk("uncorrectable ECC or parity error in vector memory"); z_fatal_print("uncorrectable ECC or parity error in vector memory");
break; break;
default: default:
printk("unknown"); z_fatal_print("unknown");
break; break;
} }
} }
@ -246,54 +237,54 @@ static void dump_privilege_exception(u32_t cause, u32_t parameter)
{ {
switch (cause) { switch (cause) {
case 0x0: case 0x0:
printk("Privilege violation"); z_fatal_print("Privilege violation");
break; break;
case 0x1: case 0x1:
printk("disabled extension"); z_fatal_print("disabled extension");
break; break;
case 0x2: case 0x2:
printk("action point hit"); z_fatal_print("action point hit");
break; break;
case 0x10: case 0x10:
switch (parameter) { switch (parameter) {
case 0x1: case 0x1:
printk("N to S return using incorrect return mechanism"); z_fatal_print("N to S return using incorrect return mechanism");
break; break;
case 0x2: case 0x2:
printk("N to S return with incorrect operating mode"); z_fatal_print("N to S return with incorrect operating mode");
break; break;
case 0x3: case 0x3:
printk("IRQ/exception return fetch from wrong mode"); z_fatal_print("IRQ/exception return fetch from wrong mode");
break; break;
case 0x4: case 0x4:
printk("attempt to halt secure processor in NS mode"); z_fatal_print("attempt to halt secure processor in NS mode");
break; break;
case 0x20: case 0x20:
printk("attempt to access secure resource from normal mode"); z_fatal_print("attempt to access secure resource from normal mode");
break; break;
case 0x40: case 0x40:
printk("SID violation on resource access (APEX/UAUX/key NVM)"); z_fatal_print("SID violation on resource access (APEX/UAUX/key NVM)");
break; break;
default: default:
printk("unknown"); z_fatal_print("unknown");
break; break;
} }
break; break;
case 0x13: case 0x13:
switch (parameter) { switch (parameter) {
case 0x20: case 0x20:
printk("attempt to access secure APEX feature from NS mode"); z_fatal_print("attempt to access secure APEX feature from NS mode");
break; break;
case 0x40: case 0x40:
printk("SID violation on access to APEX feature"); z_fatal_print("SID violation on access to APEX feature");
break; break;
default: default:
printk("unknown"); z_fatal_print("unknown");
break; break;
} }
break; break;
default: default:
printk("unknown"); z_fatal_print("unknown");
break; break;
} }
} }
@ -301,7 +292,7 @@ static void dump_privilege_exception(u32_t cause, u32_t parameter)
static void dump_exception_info(u32_t vector, u32_t cause, u32_t parameter) static void dump_exception_info(u32_t vector, u32_t cause, u32_t parameter)
{ {
if (vector >= 0x10 && vector <= 0xFF) { if (vector >= 0x10 && vector <= 0xFF) {
printk("interrupt %u\n", vector); z_fatal_print("interrupt %u", vector);
return; return;
} }
@ -310,59 +301,57 @@ static void dump_exception_info(u32_t vector, u32_t cause, u32_t parameter)
*/ */
switch (vector) { switch (vector) {
case ARC_EV_RESET: case ARC_EV_RESET:
printk("Reset"); z_fatal_print("Reset");
break; break;
case ARC_EV_MEM_ERROR: case ARC_EV_MEM_ERROR:
printk("Memory Error"); z_fatal_print("Memory Error");
break; break;
case ARC_EV_INS_ERROR: case ARC_EV_INS_ERROR:
printk("Instruction Error"); z_fatal_print("Instruction Error");
break; break;
case ARC_EV_MACHINE_CHECK: case ARC_EV_MACHINE_CHECK:
printk("EV_MachineCheck: "); z_fatal_print("EV_MachineCheck");
dump_machine_check_exception(cause, parameter); dump_machine_check_exception(cause, parameter);
break; break;
case ARC_EV_TLB_MISS_I: case ARC_EV_TLB_MISS_I:
printk("EV_TLBMissI"); z_fatal_print("EV_TLBMissI");
break; break;
case ARC_EV_TLB_MISS_D: case ARC_EV_TLB_MISS_D:
printk("EV_TLBMissD"); z_fatal_print("EV_TLBMissD");
break; break;
case ARC_EV_PROT_V: case ARC_EV_PROT_V:
printk("EV_ProtV: "); z_fatal_print("EV_ProtV");
dump_protv_exception(cause, parameter); dump_protv_exception(cause, parameter);
break; break;
case ARC_EV_PRIVILEGE_V: case ARC_EV_PRIVILEGE_V:
printk("EV_PrivilegeV: "); z_fatal_print("EV_PrivilegeV");
dump_privilege_exception(cause, parameter); dump_privilege_exception(cause, parameter);
break; break;
case ARC_EV_SWI: case ARC_EV_SWI:
printk("EV_SWI"); z_fatal_print("EV_SWI");
break; break;
case ARC_EV_TRAP: case ARC_EV_TRAP:
printk("EV_Trap"); z_fatal_print("EV_Trap");
break; break;
case ARC_EV_EXTENSION: case ARC_EV_EXTENSION:
printk("EV_Extension"); z_fatal_print("EV_Extension");
break; break;
case ARC_EV_DIV_ZERO: case ARC_EV_DIV_ZERO:
printk("EV_DivZero"); z_fatal_print("EV_DivZero");
break; break;
case ARC_EV_DC_ERROR: case ARC_EV_DC_ERROR:
printk("EV_DCError"); z_fatal_print("EV_DCError");
break; break;
case ARC_EV_MISALIGNED: case ARC_EV_MISALIGNED:
printk("EV_Misaligned"); z_fatal_print("EV_Misaligned");
break; break;
case ARC_EV_VEC_UNIT: case ARC_EV_VEC_UNIT:
printk("EV_VecUnit"); z_fatal_print("EV_VecUnit");
break; break;
default: default:
printk("unknown"); z_fatal_print("unknown");
break; break;
} }
printk("\n");
} }
#endif /* CONFIG_ARC_EXCEPTION_DEBUG */ #endif /* CONFIG_ARC_EXCEPTION_DEBUG */
@ -402,9 +391,9 @@ void _Fault(NANO_ESF *esf)
return; return;
} }
printk("***** Exception vector: 0x%x, cause code: 0x%x, parameter 0x%x\n", z_fatal_print("***** Exception vector: 0x%x, cause code: 0x%x, parameter 0x%x",
vector, cause, parameter); vector, cause, parameter);
printk("Address 0x%x\n", exc_addr); z_fatal_print("Address 0x%x", exc_addr);
#ifdef CONFIG_ARC_EXCEPTION_DEBUG #ifdef CONFIG_ARC_EXCEPTION_DEBUG
dump_exception_info(vector, cause, parameter); dump_exception_info(vector, cause, parameter);
#endif #endif

View file

@ -17,12 +17,11 @@
#include <kernel.h> #include <kernel.h>
#include <kernel_structs.h> #include <kernel_structs.h>
#include <sys/printk.h>
#include <logging/log_ctrl.h> #include <logging/log_ctrl.h>
void z_arm_fatal_error(unsigned int reason, const NANO_ESF *esf) void z_arm_fatal_error(unsigned int reason, const NANO_ESF *esf)
{ {
printk("Faulting instruction address = 0x%x\n", z_fatal_print("Faulting instruction address = 0x%x",
esf->basic.pc); esf->basic.pc);
z_fatal_error(reason, esf); z_fatal_error(reason, esf);
} }

View file

@ -20,14 +20,13 @@
#include <exc_handle.h> #include <exc_handle.h>
#include <logging/log_ctrl.h> #include <logging/log_ctrl.h>
#ifdef CONFIG_PRINTK #if defined(CONFIG_PRINTK) || defined(CONFIG_LOG)
#include <sys/printk.h> #define PR_EXC(...) z_fatal_print(__VA_ARGS__)
#define PR_EXC(...) printk(__VA_ARGS__)
#define STORE_xFAR(reg_var, reg) u32_t reg_var = (u32_t)reg #define STORE_xFAR(reg_var, reg) u32_t reg_var = (u32_t)reg
#else #else
#define PR_EXC(...) #define PR_EXC(...)
#define STORE_xFAR(reg_var, reg) #define STORE_xFAR(reg_var, reg)
#endif /* CONFIG_PRINTK */ #endif /* CONFIG_PRINTK || CONFIG_LOG */
#if (CONFIG_FAULT_DUMP == 2) #if (CONFIG_FAULT_DUMP == 2)
#define PR_FAULT_INFO(...) PR_EXC(__VA_ARGS__) #define PR_FAULT_INFO(...) PR_EXC(__VA_ARGS__)
@ -139,13 +138,13 @@
#if (CONFIG_FAULT_DUMP == 1) #if (CONFIG_FAULT_DUMP == 1)
static void FaultShow(const NANO_ESF *esf, int fault) static void FaultShow(const NANO_ESF *esf, int fault)
{ {
PR_EXC("Fault! EXC #%d\n", fault); PR_EXC("Fault! EXC #%d", fault);
#if defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE) #if defined(CONFIG_ARMV7_M_ARMV8_M_MAINLINE)
PR_EXC("MMFSR: 0x%x, BFSR: 0x%x, UFSR: 0x%x\n", PR_EXC("MMFSR: 0x%x, BFSR: 0x%x, UFSR: 0x%x",
SCB_MMFSR, SCB_BFSR, SCB_UFSR); SCB_MMFSR, SCB_BFSR, SCB_UFSR);
#if defined(CONFIG_ARM_SECURE_FIRMWARE) #if defined(CONFIG_ARM_SECURE_FIRMWARE)
PR_EXC("SFSR: 0x%x\n", SAU->SFSR); PR_EXC("SFSR: 0x%x", SAU->SFSR);
#endif /* CONFIG_ARM_SECURE_FIRMWARE */ #endif /* CONFIG_ARM_SECURE_FIRMWARE */
#endif /* CONFIG_ARMV7_M_ARMV8_M_MAINLINE */ #endif /* CONFIG_ARMV7_M_ARMV8_M_MAINLINE */
} }
@ -216,17 +215,17 @@ static u32_t MpuFault(NANO_ESF *esf, int fromHardFault, bool *recoverable)
u32_t reason = K_ERR_CPU_EXCEPTION; u32_t reason = K_ERR_CPU_EXCEPTION;
u32_t mmfar = -EINVAL; u32_t mmfar = -EINVAL;
PR_FAULT_INFO("***** MPU FAULT *****\n"); PR_FAULT_INFO("***** MPU FAULT *****");
if ((SCB->CFSR & SCB_CFSR_MSTKERR_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_MSTKERR_Msk) != 0) {
PR_FAULT_INFO(" Stacking error (context area might be" PR_FAULT_INFO(" Stacking error (context area might be"
" not valid)\n"); " not valid)");
} }
if ((SCB->CFSR & SCB_CFSR_MUNSTKERR_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_MUNSTKERR_Msk) != 0) {
PR_FAULT_INFO(" Unstacking error\n"); PR_FAULT_INFO(" Unstacking error");
} }
if ((SCB->CFSR & SCB_CFSR_DACCVIOL_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_DACCVIOL_Msk) != 0) {
PR_FAULT_INFO(" Data Access Violation\n"); PR_FAULT_INFO(" Data Access Violation");
/* In a fault handler, to determine the true faulting address: /* In a fault handler, to determine the true faulting address:
* 1. Read and save the MMFAR value. * 1. Read and save the MMFAR value.
* 2. Read the MMARVALID bit in the MMFSR. * 2. Read the MMARVALID bit in the MMFSR.
@ -238,7 +237,7 @@ static u32_t MpuFault(NANO_ESF *esf, int fromHardFault, bool *recoverable)
mmfar = SCB->MMFAR; mmfar = SCB->MMFAR;
if ((SCB->CFSR & SCB_CFSR_MMARVALID_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_MMARVALID_Msk) != 0) {
PR_EXC(" MMFAR Address: 0x%x\n", mmfar); PR_EXC(" MMFAR Address: 0x%x", mmfar);
if (fromHardFault) { if (fromHardFault) {
/* clear SCB_MMAR[VALID] to reset */ /* clear SCB_MMAR[VALID] to reset */
SCB->CFSR &= ~SCB_CFSR_MMARVALID_Msk; SCB->CFSR &= ~SCB_CFSR_MMARVALID_Msk;
@ -246,12 +245,12 @@ static u32_t MpuFault(NANO_ESF *esf, int fromHardFault, bool *recoverable)
} }
} }
if ((SCB->CFSR & SCB_CFSR_IACCVIOL_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_IACCVIOL_Msk) != 0) {
PR_FAULT_INFO(" Instruction Access Violation\n"); PR_FAULT_INFO(" Instruction Access Violation");
} }
#if defined(CONFIG_ARMV7_M_ARMV8_M_FP) #if defined(CONFIG_ARMV7_M_ARMV8_M_FP)
if ((SCB->CFSR & SCB_CFSR_MLSPERR_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_MLSPERR_Msk) != 0) {
PR_FAULT_INFO( PR_FAULT_INFO(
" Floating-point lazy state preservation error\n"); " Floating-point lazy state preservation error");
} }
#endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */ #endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */
@ -338,16 +337,16 @@ static int BusFault(NANO_ESF *esf, int fromHardFault, bool *recoverable)
{ {
u32_t reason = K_ERR_CPU_EXCEPTION; u32_t reason = K_ERR_CPU_EXCEPTION;
PR_FAULT_INFO("***** BUS FAULT *****\n"); PR_FAULT_INFO("***** BUS FAULT *****");
if (SCB->CFSR & SCB_CFSR_STKERR_Msk) { if (SCB->CFSR & SCB_CFSR_STKERR_Msk) {
PR_FAULT_INFO(" Stacking error\n"); PR_FAULT_INFO(" Stacking error");
} }
if (SCB->CFSR & SCB_CFSR_UNSTKERR_Msk) { if (SCB->CFSR & SCB_CFSR_UNSTKERR_Msk) {
PR_FAULT_INFO(" Unstacking error\n"); PR_FAULT_INFO(" Unstacking error");
} }
if (SCB->CFSR & SCB_CFSR_PRECISERR_Msk) { if (SCB->CFSR & SCB_CFSR_PRECISERR_Msk) {
PR_FAULT_INFO(" Precise data bus error\n"); PR_FAULT_INFO(" Precise data bus error");
/* In a fault handler, to determine the true faulting address: /* In a fault handler, to determine the true faulting address:
* 1. Read and save the BFAR value. * 1. Read and save the BFAR value.
* 2. Read the BFARVALID bit in the BFSR. * 2. Read the BFARVALID bit in the BFSR.
@ -359,7 +358,7 @@ static int BusFault(NANO_ESF *esf, int fromHardFault, bool *recoverable)
STORE_xFAR(bfar, SCB->BFAR); STORE_xFAR(bfar, SCB->BFAR);
if ((SCB->CFSR & SCB_CFSR_BFARVALID_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_BFARVALID_Msk) != 0) {
PR_EXC(" BFAR Address: 0x%x\n", bfar); PR_EXC(" BFAR Address: 0x%x", bfar);
if (fromHardFault) { if (fromHardFault) {
/* clear SCB_CFSR_BFAR[VALID] to reset */ /* clear SCB_CFSR_BFAR[VALID] to reset */
SCB->CFSR &= ~SCB_CFSR_BFARVALID_Msk; SCB->CFSR &= ~SCB_CFSR_BFARVALID_Msk;
@ -367,15 +366,15 @@ static int BusFault(NANO_ESF *esf, int fromHardFault, bool *recoverable)
} }
} }
if (SCB->CFSR & SCB_CFSR_IMPRECISERR_Msk) { if (SCB->CFSR & SCB_CFSR_IMPRECISERR_Msk) {
PR_FAULT_INFO(" Imprecise data bus error\n"); PR_FAULT_INFO(" Imprecise data bus error");
} }
if ((SCB->CFSR & SCB_CFSR_IBUSERR_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_IBUSERR_Msk) != 0) {
PR_FAULT_INFO(" Instruction bus error\n"); PR_FAULT_INFO(" Instruction bus error");
#if !defined(CONFIG_ARMV7_M_ARMV8_M_FP) #if !defined(CONFIG_ARMV7_M_ARMV8_M_FP)
} }
#else #else
} else if (SCB->CFSR & SCB_CFSR_LSPERR_Msk) { } else if (SCB->CFSR & SCB_CFSR_LSPERR_Msk) {
PR_FAULT_INFO(" Floating-point lazy state preservation error\n"); PR_FAULT_INFO(" Floating-point lazy state preservation error");
} }
#endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */ #endif /* !defined(CONFIG_ARMV7_M_ARMV8_M_FP) */
@ -393,13 +392,13 @@ static int BusFault(NANO_ESF *esf, int fromHardFault, bool *recoverable)
STORE_xFAR(edr, SYSMPU->SP[i].EDR); STORE_xFAR(edr, SYSMPU->SP[i].EDR);
ear = SYSMPU->SP[i].EAR; ear = SYSMPU->SP[i].EAR;
PR_FAULT_INFO(" NXP MPU error, port %d\n", i); PR_FAULT_INFO(" NXP MPU error, port %d", i);
PR_FAULT_INFO(" Mode: %s, %s Address: 0x%x\n", PR_FAULT_INFO(" Mode: %s, %s Address: 0x%x",
edr & BIT(2) ? "Supervisor" : "User", edr & BIT(2) ? "Supervisor" : "User",
edr & BIT(1) ? "Data" : "Instruction", edr & BIT(1) ? "Data" : "Instruction",
ear); ear);
PR_FAULT_INFO( PR_FAULT_INFO(
" Type: %s, Master: %d, Regions: 0x%x\n", " Type: %s, Master: %d, Regions: 0x%x",
edr & BIT(0) ? "Write" : "Read", edr & BIT(0) ? "Write" : "Read",
EMN(edr), EACD(edr)); EMN(edr), EACD(edr));
@ -464,7 +463,7 @@ static int BusFault(NANO_ESF *esf, int fromHardFault, bool *recoverable)
(void)ear; (void)ear;
__ASSERT(0, __ASSERT(0,
"Stacking error without stack guard" "Stacking error without stack guard"
"or User-mode support\n"); "or User-mode support");
#endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */ #endif /* CONFIG_MPU_STACK_GUARD || CONFIG_USERSPACE */
} }
} }
@ -492,18 +491,18 @@ static u32_t UsageFault(const NANO_ESF *esf)
{ {
u32_t reason = K_ERR_CPU_EXCEPTION; u32_t reason = K_ERR_CPU_EXCEPTION;
PR_FAULT_INFO("***** USAGE FAULT *****\n"); PR_FAULT_INFO("***** USAGE FAULT *****");
/* bits are sticky: they stack and must be reset */ /* bits are sticky: they stack and must be reset */
if ((SCB->CFSR & SCB_CFSR_DIVBYZERO_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_DIVBYZERO_Msk) != 0) {
PR_FAULT_INFO(" Division by zero\n"); PR_FAULT_INFO(" Division by zero");
} }
if ((SCB->CFSR & SCB_CFSR_UNALIGNED_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_UNALIGNED_Msk) != 0) {
PR_FAULT_INFO(" Unaligned memory access\n"); PR_FAULT_INFO(" Unaligned memory access");
} }
#if defined(CONFIG_ARMV8_M_MAINLINE) #if defined(CONFIG_ARMV8_M_MAINLINE)
if ((SCB->CFSR & SCB_CFSR_STKOF_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_STKOF_Msk) != 0) {
PR_FAULT_INFO(" Stack overflow (context area not valid)\n"); PR_FAULT_INFO(" Stack overflow (context area not valid)");
#if defined(CONFIG_BUILTIN_STACK_GUARD) #if defined(CONFIG_BUILTIN_STACK_GUARD)
/* Stack Overflows are always reported as stack corruption /* Stack Overflows are always reported as stack corruption
* errors. Note that the built-in stack overflow mechanism * errors. Note that the built-in stack overflow mechanism
@ -517,16 +516,16 @@ static u32_t UsageFault(const NANO_ESF *esf)
} }
#endif /* CONFIG_ARMV8_M_MAINLINE */ #endif /* CONFIG_ARMV8_M_MAINLINE */
if ((SCB->CFSR & SCB_CFSR_NOCP_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_NOCP_Msk) != 0) {
PR_FAULT_INFO(" No coprocessor instructions\n"); PR_FAULT_INFO(" No coprocessor instructions");
} }
if ((SCB->CFSR & SCB_CFSR_INVPC_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_INVPC_Msk) != 0) {
PR_FAULT_INFO(" Illegal load of EXC_RETURN into PC\n"); PR_FAULT_INFO(" Illegal load of EXC_RETURN into PC");
} }
if ((SCB->CFSR & SCB_CFSR_INVSTATE_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_INVSTATE_Msk) != 0) {
PR_FAULT_INFO(" Illegal use of the EPSR\n"); PR_FAULT_INFO(" Illegal use of the EPSR");
} }
if ((SCB->CFSR & SCB_CFSR_UNDEFINSTR_Msk) != 0) { if ((SCB->CFSR & SCB_CFSR_UNDEFINSTR_Msk) != 0) {
PR_FAULT_INFO(" Attempt to execute undefined instruction\n"); PR_FAULT_INFO(" Attempt to execute undefined instruction");
} }
/* clear UFSR sticky bits */ /* clear UFSR sticky bits */
@ -546,28 +545,28 @@ static u32_t UsageFault(const NANO_ESF *esf)
*/ */
static void SecureFault(const NANO_ESF *esf) static void SecureFault(const NANO_ESF *esf)
{ {
PR_FAULT_INFO("***** SECURE FAULT *****\n"); PR_FAULT_INFO("***** SECURE FAULT *****");
STORE_xFAR(sfar, SAU->SFAR); STORE_xFAR(sfar, SAU->SFAR);
if ((SAU->SFSR & SAU_SFSR_SFARVALID_Msk) != 0) { if ((SAU->SFSR & SAU_SFSR_SFARVALID_Msk) != 0) {
PR_EXC(" Address: 0x%x\n", sfar); PR_EXC(" Address: 0x%x", sfar);
} }
/* bits are sticky: they stack and must be reset */ /* bits are sticky: they stack and must be reset */
if ((SAU->SFSR & SAU_SFSR_INVEP_Msk) != 0) { if ((SAU->SFSR & SAU_SFSR_INVEP_Msk) != 0) {
PR_FAULT_INFO(" Invalid entry point\n"); PR_FAULT_INFO(" Invalid entry point");
} else if ((SAU->SFSR & SAU_SFSR_INVIS_Msk) != 0) { } else if ((SAU->SFSR & SAU_SFSR_INVIS_Msk) != 0) {
PR_FAULT_INFO(" Invalid integrity signature\n"); PR_FAULT_INFO(" Invalid integrity signature");
} else if ((SAU->SFSR & SAU_SFSR_INVER_Msk) != 0) { } else if ((SAU->SFSR & SAU_SFSR_INVER_Msk) != 0) {
PR_FAULT_INFO(" Invalid exception return\n"); PR_FAULT_INFO(" Invalid exception return");
} else if ((SAU->SFSR & SAU_SFSR_AUVIOL_Msk) != 0) { } else if ((SAU->SFSR & SAU_SFSR_AUVIOL_Msk) != 0) {
PR_FAULT_INFO(" Attribution unit violation\n"); PR_FAULT_INFO(" Attribution unit violation");
} else if ((SAU->SFSR & SAU_SFSR_INVTRAN_Msk) != 0) { } else if ((SAU->SFSR & SAU_SFSR_INVTRAN_Msk) != 0) {
PR_FAULT_INFO(" Invalid transition\n"); PR_FAULT_INFO(" Invalid transition");
} else if ((SAU->SFSR & SAU_SFSR_LSPERR_Msk) != 0) { } else if ((SAU->SFSR & SAU_SFSR_LSPERR_Msk) != 0) {
PR_FAULT_INFO(" Lazy state preservation\n"); PR_FAULT_INFO(" Lazy state preservation");
} else if ((SAU->SFSR & SAU_SFSR_LSERR_Msk) != 0) { } else if ((SAU->SFSR & SAU_SFSR_LSERR_Msk) != 0) {
PR_FAULT_INFO(" Lazy state error\n"); PR_FAULT_INFO(" Lazy state error");
} }
/* clear SFSR sticky bits */ /* clear SFSR sticky bits */
@ -588,7 +587,7 @@ static void DebugMonitor(const NANO_ESF *esf)
ARG_UNUSED(esf); ARG_UNUSED(esf);
PR_FAULT_INFO( PR_FAULT_INFO(
"***** Debug monitor exception (not implemented) *****\n"); "***** Debug monitor exception (not implemented) *****");
} }
#else #else
@ -607,7 +606,7 @@ static u32_t HardFault(NANO_ESF *esf, bool *recoverable)
{ {
u32_t reason = K_ERR_CPU_EXCEPTION; u32_t reason = K_ERR_CPU_EXCEPTION;
PR_FAULT_INFO("***** HARD FAULT *****\n"); PR_FAULT_INFO("***** HARD FAULT *****");
#if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE) #if defined(CONFIG_ARMV6_M_ARMV8_M_BASELINE)
*recoverable = memory_fault_recoverable(esf); *recoverable = memory_fault_recoverable(esf);
@ -615,9 +614,9 @@ static u32_t HardFault(NANO_ESF *esf, bool *recoverable)
*recoverable = false; *recoverable = false;
if ((SCB->HFSR & SCB_HFSR_VECTTBL_Msk) != 0) { if ((SCB->HFSR & SCB_HFSR_VECTTBL_Msk) != 0) {
PR_EXC(" Bus fault on vector table read\n"); PR_EXC(" Bus fault on vector table read");
} else if ((SCB->HFSR & SCB_HFSR_FORCED_Msk) != 0) { } else if ((SCB->HFSR & SCB_HFSR_FORCED_Msk) != 0) {
PR_EXC(" Fault escalation (see below)\n"); PR_EXC(" Fault escalation (see below)");
if (SCB_MMFSR != 0) { if (SCB_MMFSR != 0) {
reason = MpuFault(esf, 1, recoverable); reason = MpuFault(esf, 1, recoverable);
} else if (SCB_BFSR != 0) { } else if (SCB_BFSR != 0) {
@ -649,7 +648,7 @@ static void ReservedException(const NANO_ESF *esf, int fault)
{ {
ARG_UNUSED(esf); ARG_UNUSED(esf);
PR_FAULT_INFO("***** %s %d) *****\n", PR_FAULT_INFO("***** %s %d) *****",
fault < 16 ? "Reserved Exception (" : "Spurious interrupt (IRQ ", fault < 16 ? "Reserved Exception (" : "Spurious interrupt (IRQ ",
fault - 16); fault - 16);
} }
@ -742,7 +741,7 @@ static void SecureStackDump(const NANO_ESF *secure_esf)
*/ */
sec_ret_addr = *top_of_sec_stack; sec_ret_addr = *top_of_sec_stack;
} }
PR_FAULT_INFO(" S instruction address: 0x%x\n", sec_ret_addr); PR_FAULT_INFO(" S instruction address: 0x%x", sec_ret_addr);
} }
#define SECURE_STACK_DUMP(esf) SecureStackDump(esf) #define SECURE_STACK_DUMP(esf) SecureStackDump(esf)
@ -818,13 +817,13 @@ void _Fault(NANO_ESF *esf, u32_t exc_return)
if (exc_return & EXC_RETURN_MODE_THREAD) { if (exc_return & EXC_RETURN_MODE_THREAD) {
esf = (NANO_ESF *)__TZ_get_PSP_NS(); esf = (NANO_ESF *)__TZ_get_PSP_NS();
if ((SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) == 0) { if ((SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) == 0) {
PR_EXC("RETTOBASE does not match EXC_RETURN\n"); PR_EXC("RETTOBASE does not match EXC_RETURN");
goto _exit_fatal; goto _exit_fatal;
} }
} else { } else {
esf = (NANO_ESF *)__TZ_get_MSP_NS(); esf = (NANO_ESF *)__TZ_get_MSP_NS();
if ((SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) != 0) { if ((SCB->ICSR & SCB_ICSR_RETTOBASE_Msk) != 0) {
PR_EXC("RETTOBASE does not match EXC_RETURN\n"); PR_EXC("RETTOBASE does not match EXC_RETURN");
goto _exit_fatal; goto _exit_fatal;
} }
} }
@ -850,7 +849,7 @@ void _Fault(NANO_ESF *esf, u32_t exc_return)
* inspection will indicate the Non-Secure instruction * inspection will indicate the Non-Secure instruction
* that performed the branch to the Secure domain. * that performed the branch to the Secure domain.
*/ */
PR_FAULT_INFO("Exception occurred in Secure State\n"); PR_FAULT_INFO("Exception occurred in Secure State");
} }
#else #else
(void) exc_return; (void) exc_return;

View file

@ -7,7 +7,6 @@
#include <kernel.h> #include <kernel.h>
#include <arch/cpu.h> #include <arch/cpu.h>
#include <kernel_structs.h> #include <kernel_structs.h>
#include <sys/printk.h>
#include <inttypes.h> #include <inttypes.h>
#include <logging/log_ctrl.h> #include <logging/log_ctrl.h>
@ -22,24 +21,24 @@ FUNC_NORETURN void z_nios2_fatal_error(unsigned int reason,
* entry. We may want to introduce a config option to save and * entry. We may want to introduce a config option to save and
* dump all registers, at the expense of some stack space. * dump all registers, at the expense of some stack space.
*/ */
printk("Faulting instruction: 0x%x\n" z_fatal_print("Faulting instruction: 0x%08x", esf->instr - 4);
" r1: 0x%x r2: 0x%x r3: 0x%x r4: 0x%x\n" z_fatal_print(" r1: 0x%08x r2: 0x%08x r3: 0x%08x r4: 0x%08x",
" r5: 0x%x r6: 0x%x r7: 0x%x r8: 0x%x\n" esf->r1, esf->r2, esf->r3, esf->r4);
" r9: 0x%x r10: 0x%x r11: 0x%x r12: 0x%x\n" z_fatal_print(" r5: 0x%08x r6: 0x%08x r7: 0x%08x r8: 0x%08x",
" r13: 0x%x r14: 0x%x r15: 0x%x ra: 0x%x\n" esf->r5, esf->r6, esf->r7, esf->r8);
"estatus: %x\n", esf->instr - 4, z_fatal_print(" r9: 0x%08x r10: 0x%08x r11: 0x%08x r12: 0x%08x",
esf->r1, esf->r2, esf->r3, esf->r4, esf->r9, esf->r10, esf->r11, esf->r12);
esf->r5, esf->r6, esf->r7, esf->r8, z_fatal_print(" r13: 0x%08x r14: 0x%08x r15: 0x%08x ra: 0x%08x",
esf->r9, esf->r10, esf->r11, esf->r12, esf->r13, esf->r14, esf->r15, esf->ra);
esf->r13, esf->r14, esf->r15, esf->ra, z_fatal_print("estatus: %08x", esf->estatus);
esf->estatus);
} }
z_fatal_error(reason, esf); z_fatal_error(reason, esf);
CODE_UNREACHABLE; CODE_UNREACHABLE;
} }
#if defined(CONFIG_EXTRA_EXCEPTION_INFO) && defined(CONFIG_PRINTK) \ #if defined(CONFIG_EXTRA_EXCEPTION_INFO) && \
(defined(CONFIG_PRINTK) || defined(CONFIG_LOG)) \
&& defined(ALT_CPU_HAS_EXTRA_EXCEPTION_INFO) && defined(ALT_CPU_HAS_EXTRA_EXCEPTION_INFO)
static char *cause_str(u32_t cause_code) static char *cause_str(u32_t cause_code)
{ {
@ -102,7 +101,7 @@ static char *cause_str(u32_t cause_code)
FUNC_NORETURN void _Fault(const NANO_ESF *esf) FUNC_NORETURN void _Fault(const NANO_ESF *esf)
{ {
#ifdef CONFIG_PRINTK #if defined(CONFIG_PRINTK) || defined(CONFIG_LOG)
/* Unfortunately, completely unavailable on Nios II/e cores */ /* Unfortunately, completely unavailable on Nios II/e cores */
#ifdef ALT_CPU_HAS_EXTRA_EXCEPTION_INFO #ifdef ALT_CPU_HAS_EXTRA_EXCEPTION_INFO
u32_t exc_reg, badaddr_reg, eccftl; u32_t exc_reg, badaddr_reg, eccftl;
@ -117,16 +116,16 @@ FUNC_NORETURN void _Fault(const NANO_ESF *esf)
cause = (exc_reg & NIOS2_EXCEPTION_REG_CAUSE_MASK) cause = (exc_reg & NIOS2_EXCEPTION_REG_CAUSE_MASK)
>> NIOS2_EXCEPTION_REG_CAUSE_OFST; >> NIOS2_EXCEPTION_REG_CAUSE_OFST;
printk("Exception cause: %d ECCFTL: 0x%x\n", cause, eccftl); z_fatal_print("Exception cause: %d ECCFTL: 0x%x", cause, eccftl);
#if CONFIG_EXTRA_EXCEPTION_INFO #if CONFIG_EXTRA_EXCEPTION_INFO
printk("reason: %s\n", cause_str(cause)); z_fatal_print("reason: %s", cause_str(cause));
#endif #endif
if (BIT(cause) & NIOS2_BADADDR_CAUSE_MASK) { if (BIT(cause) & NIOS2_BADADDR_CAUSE_MASK) {
badaddr_reg = z_nios2_creg_read(NIOS2_CR_BADADDR); badaddr_reg = z_nios2_creg_read(NIOS2_CR_BADADDR);
printk("Badaddr: 0x%x\n", badaddr_reg); z_fatal_print("Badaddr: 0x%x", badaddr_reg);
} }
#endif /* ALT_CPU_HAS_EXTRA_EXCEPTION_INFO */ #endif /* ALT_CPU_HAS_EXTRA_EXCEPTION_INFO */
#endif /* CONFIG_PRINTK */ #endif /* CONFIG_PRINTK || CONFIG_LOG */
z_nios2_fatal_error(K_ERR_CPU_EXCEPTION, esf); z_nios2_fatal_error(K_ERR_CPU_EXCEPTION, esf);
} }

View file

@ -15,7 +15,6 @@
#include <kernel_structs.h> #include <kernel_structs.h>
#include <arch/cpu.h> #include <arch/cpu.h>
#include <irq.h> #include <irq.h>
#include <sys/printk.h>
#include <sw_isr_table.h> #include <sw_isr_table.h>
#include <ksched.h> #include <ksched.h>
#include <kswap.h> #include <kswap.h>
@ -24,7 +23,7 @@
FUNC_NORETURN void z_irq_spurious(void *unused) FUNC_NORETURN void z_irq_spurious(void *unused)
{ {
ARG_UNUSED(unused); ARG_UNUSED(unused);
printk("Spurious interrupt detected! ipending: %x\n", z_fatal_print("Spurious interrupt detected! ipending: %x",
z_nios2_creg_read(NIOS2_CR_IPENDING)); z_nios2_creg_read(NIOS2_CR_IPENDING));
z_nios2_fatal_error(K_ERR_SPURIOUS_IRQ, NULL); z_nios2_fatal_error(K_ERR_SPURIOUS_IRQ, NULL);
} }

View file

@ -7,24 +7,23 @@
#include <kernel.h> #include <kernel.h>
#include <kernel_structs.h> #include <kernel_structs.h>
#include <inttypes.h> #include <inttypes.h>
#include <sys/printk.h>
#include <logging/log_ctrl.h> #include <logging/log_ctrl.h>
FUNC_NORETURN void z_riscv32_fatal_error(unsigned int reason, FUNC_NORETURN void z_riscv32_fatal_error(unsigned int reason,
const NANO_ESF *esf) const NANO_ESF *esf)
{ {
if (esf != NULL) { if (esf != NULL) {
printk("Faulting instruction address = 0x%x\n" z_fatal_print("Faulting instruction address = 0x%08x",
" ra: 0x%x gp: 0x%x tp: 0x%x t0: 0x%x\n" esf->mepc);
" t1: 0x%x t2: 0x%x t3: 0x%x t4: 0x%x\n" z_fatal_print(" ra: 0x%08x gp: 0x%08x tp: 0x%08x t0: 0x%08x",
" t5: 0x%x t6: 0x%x a0: 0x%x a1: 0x%x\n" esf->ra, esf->gp, esf->tp, esf->t0);
" a2: 0x%x a3: 0x%x a4: 0x%x a5: 0x%x\n" z_fatal_print(" t1: 0x%08x t2: 0x%08x t3: 0x%08x t4: 0x%08x",
" a6: 0x%x a7: 0x%x\n", esf->t1, esf->t2, esf->t3, esf->t4);
esf->mepc, z_fatal_print(" t5: 0x%08x t6: 0x%08x a0: 0x%08x a1: 0x%08x",
esf->ra, esf->gp, esf->tp, esf->t0, esf->t5, esf->t6, esf->a0, esf->a1);
esf->t1, esf->t2, esf->t3, esf->t4, z_fatal_print(" a2: 0x%08x a3: 0x%08x a4: 0x%08x a5: 0x%08x",
esf->t5, esf->t6, esf->a0, esf->a1, esf->a2, esf->a3, esf->a4, esf->a5);
esf->a2, esf->a3, esf->a4, esf->a5, z_fatal_print(" a6: 0x%08x a7: 0x%08x\n",
esf->a6, esf->a7); esf->a6, esf->a7);
} }
@ -59,7 +58,8 @@ FUNC_NORETURN void _Fault(const NANO_ESF *esf)
__asm__ volatile("csrr %0, mcause" : "=r" (mcause)); __asm__ volatile("csrr %0, mcause" : "=r" (mcause));
mcause &= SOC_MCAUSE_EXP_MASK; mcause &= SOC_MCAUSE_EXP_MASK;
printk("Exception cause %s (%d)\n", cause_str(mcause), (int)mcause); z_fatal_print("Exception cause %s (%d)", cause_str(mcause),
(int)mcause);
z_riscv32_fatal_error(K_ERR_CPU_EXCEPTION, esf); z_riscv32_fatal_error(K_ERR_CPU_EXCEPTION, esf);
} }

View file

@ -6,7 +6,6 @@
#include <toolchain.h> #include <toolchain.h>
#include <kernel_structs.h> #include <kernel_structs.h>
#include <sys/printk.h>
FUNC_NORETURN void z_irq_spurious(void *unused) FUNC_NORETURN void z_irq_spurious(void *unused)
{ {
@ -18,10 +17,10 @@ FUNC_NORETURN void z_irq_spurious(void *unused)
mcause &= SOC_MCAUSE_EXP_MASK; mcause &= SOC_MCAUSE_EXP_MASK;
printk("Spurious interrupt detected! IRQ: %d\n", (int)mcause); z_fatal_print("Spurious interrupt detected! IRQ: %d", (int)mcause);
#if defined(CONFIG_RISCV_HAS_PLIC) #if defined(CONFIG_RISCV_HAS_PLIC)
if (mcause == RISCV_MACHINE_EXT_IRQ) { if (mcause == RISCV_MACHINE_EXT_IRQ) {
printk("PLIC interrupt line causing the IRQ: %d\n", z_fatal_print("PLIC interrupt line causing the IRQ: %d",
riscv_plic_get_irq()); riscv_plic_get_irq());
} }
#endif #endif

View file

@ -14,7 +14,6 @@
#include <kernel.h> #include <kernel.h>
#include <kernel_structs.h> #include <kernel_structs.h>
#include <sys/printk.h>
#include <drivers/interrupt_controller/sysapic.h> #include <drivers/interrupt_controller/sysapic.h>
#include <arch/x86/ia32/segmentation.h> #include <arch/x86/ia32/segmentation.h>
#include <ia32/exception.h> #include <ia32/exception.h>
@ -78,13 +77,13 @@ static void unwind_stack(u32_t base_ptr, u16_t cs)
int i; int i;
if (base_ptr == 0U) { if (base_ptr == 0U) {
printk("NULL base ptr\n"); z_fatal_print("NULL base ptr");
return; return;
} }
for (i = 0; i < MAX_STACK_FRAMES; i++) { for (i = 0; i < MAX_STACK_FRAMES; i++) {
if (base_ptr % sizeof(base_ptr) != 0U) { if (base_ptr % sizeof(base_ptr) != 0U) {
printk("unaligned frame ptr\n"); z_fatal_print("unaligned frame ptr");
return; return;
} }
@ -98,7 +97,7 @@ static void unwind_stack(u32_t base_ptr, u16_t cs)
* stack buffer * stack buffer
*/ */
if (check_stack_bounds((u32_t)frame, sizeof(*frame), cs)) { if (check_stack_bounds((u32_t)frame, sizeof(*frame), cs)) {
printk(" corrupted? (bp=%p)\n", frame); z_fatal_print(" corrupted? (bp=%p)", frame);
break; break;
} }
#endif #endif
@ -107,9 +106,10 @@ static void unwind_stack(u32_t base_ptr, u16_t cs)
break; break;
} }
#ifdef CONFIG_X86_IAMCU #ifdef CONFIG_X86_IAMCU
printk(" 0x%08x\n", frame->ret_addr); z_fatal_print(" 0x%08x", frame->ret_addr);
#else #else
printk(" 0x%08x (0x%x)\n", frame->ret_addr, frame->args); z_fatal_print(" 0x%08x (0x%x)", frame->ret_addr,
frame->args);
#endif #endif
base_ptr = frame->next; base_ptr = frame->next;
} }
@ -132,16 +132,17 @@ FUNC_NORETURN void z_arch_system_halt(unsigned int reason)
FUNC_NORETURN void z_x86_fatal_error(unsigned int reason, const NANO_ESF *esf) FUNC_NORETURN void z_x86_fatal_error(unsigned int reason, const NANO_ESF *esf)
{ {
if (esf != NULL) { if (esf != NULL) {
printk("eax: 0x%08x, ebx: 0x%08x, ecx: 0x%08x, edx: 0x%08x\n" z_fatal_print("eax: 0x%08x, ebx: 0x%08x, ecx: 0x%08x, edx: 0x%08x",
"esi: 0x%08x, edi: 0x%08x, ebp: 0x%08x, esp: 0x%08x\n" esf->eax, esf->ebx, esf->ecx, esf->edx);
"eflags: 0x%08x cs: 0x%04x\n" z_fatal_print("esi: 0x%08x, edi: 0x%08x, ebp: 0x%08x, esp: 0x%08x",
esf->esi, esf->edi, esf->ebp, esf->esp);
z_fatal_print("eflags: 0x%08x cs: 0x%04x", esf->eflags,
esf->cs & 0xFFFFU);
#ifdef CONFIG_EXCEPTION_STACK_TRACE #ifdef CONFIG_EXCEPTION_STACK_TRACE
"call trace:\n" z_fatal_print("call trace:");
#endif #endif
"eip: 0x%08x\n", z_fatal_print("eip: 0x%08x", esf->eip);
esf->eax, esf->ebx, esf->ecx, esf->edx,
esf->esi, esf->edi, esf->ebp, esf->esp,
esf->eflags, esf->cs & 0xFFFFU, esf->eip);
#ifdef CONFIG_EXCEPTION_STACK_TRACE #ifdef CONFIG_EXCEPTION_STACK_TRACE
unwind_stack(esf->ebp, esf->cs); unwind_stack(esf->ebp, esf->cs);
#endif #endif
@ -156,7 +157,7 @@ void z_x86_spurious_irq(const NANO_ESF *esf)
int vector = z_irq_controller_isr_vector_get(); int vector = z_irq_controller_isr_vector_get();
if (vector >= 0) { if (vector >= 0) {
printk("IRQ vector: %d\n", vector); z_fatal_print("IRQ vector: %d", vector);
} }
z_x86_fatal_error(K_ERR_SPURIOUS_IRQ, esf); z_x86_fatal_error(K_ERR_SPURIOUS_IRQ, esf);
@ -209,20 +210,19 @@ NANO_CPU_INT_REGISTER(_kernel_oops_handler, NANO_SOFT_IRQ,
FUNC_NORETURN static void generic_exc_handle(unsigned int vector, FUNC_NORETURN static void generic_exc_handle(unsigned int vector,
const NANO_ESF *pEsf) const NANO_ESF *pEsf)
{ {
printk("***** ");
switch (vector) { switch (vector) {
case IV_GENERAL_PROTECTION: case IV_GENERAL_PROTECTION:
printk("General Protection Fault\n"); z_fatal_print("General Protection Fault");
break; break;
case IV_DEVICE_NOT_AVAILABLE: case IV_DEVICE_NOT_AVAILABLE:
printk("Floating point unit not enabled\n"); z_fatal_print("Floating point unit not enabled");
break; break;
default: default:
printk("CPU exception %d\n", vector); z_fatal_print("CPU exception %d", vector);
break; break;
} }
if ((BIT(vector) & _EXC_ERROR_CODE_FAULTS) != 0) { if ((BIT(vector) & _EXC_ERROR_CODE_FAULTS) != 0) {
printk("***** Exception code: 0x%x\n", pEsf->errorCode); z_fatal_print("Exception code: 0x%x", pEsf->errorCode);
} }
z_x86_fatal_error(K_ERR_CPU_EXCEPTION, pEsf); z_x86_fatal_error(K_ERR_CPU_EXCEPTION, pEsf);
} }
@ -277,9 +277,9 @@ EXC_FUNC_NOCODE(IV_MACHINE_CHECK);
#define SGX BIT(15) #define SGX BIT(15)
#ifdef CONFIG_X86_MMU #ifdef CONFIG_X86_MMU
static void dump_entry_flags(x86_page_entry_data_t flags) static void dump_entry_flags(const char *name, x86_page_entry_data_t flags)
{ {
printk("0x%x%x %s, %s, %s, %s\n", (u32_t)(flags>>32), z_fatal_print("%s: 0x%x%x %s, %s, %s, %s", name, (u32_t)(flags>>32),
(u32_t)(flags), (u32_t)(flags),
flags & (x86_page_entry_data_t)MMU_ENTRY_PRESENT ? flags & (x86_page_entry_data_t)MMU_ENTRY_PRESENT ?
"Present" : "Non-present", "Present" : "Non-present",
@ -297,11 +297,8 @@ static void dump_mmu_flags(struct x86_mmu_pdpt *pdpt, void *addr)
z_x86_mmu_get_flags(pdpt, addr, &pde_flags, &pte_flags); z_x86_mmu_get_flags(pdpt, addr, &pde_flags, &pte_flags);
printk("PDE: "); dump_entry_flags("PDE", pde_flags);
dump_entry_flags(pde_flags); dump_entry_flags("PTE", pte_flags);
printk("PTE: ");
dump_entry_flags(pte_flags);
} }
#endif /* CONFIG_X86_MMU */ #endif /* CONFIG_X86_MMU */
@ -313,11 +310,12 @@ static void dump_page_fault(NANO_ESF *esf)
__asm__ ("mov %%cr2, %0" : "=r" (cr2)); __asm__ ("mov %%cr2, %0" : "=r" (cr2));
err = esf->errorCode; err = esf->errorCode;
printk("***** CPU Page Fault (error code 0x%08x)\n", err); z_fatal_print("***** CPU Page Fault (error code 0x%08x)", err);
printk("%s thread %s address 0x%08x\n", z_fatal_print("%s thread %s address 0x%08x",
(err & US) != 0U ? "User" : "Supervisor", (err & US) != 0U ? "User" : "Supervisor",
(err & ID) != 0U ? "executed" : ((err & WR) != 0U ? "wrote" : (err & ID) != 0U ? "executed" : ((err & WR) != 0U ?
"wrote" :
"read"), cr2); "read"), cr2);
#ifdef CONFIG_X86_MMU #ifdef CONFIG_X86_MMU
@ -414,7 +412,7 @@ static __used void df_handler_bottom(void)
_df_tss.esp = (u32_t)(_df_stack + sizeof(_df_stack)); _df_tss.esp = (u32_t)(_df_stack + sizeof(_df_stack));
_df_tss.eip = (u32_t)df_handler_top; _df_tss.eip = (u32_t)df_handler_top;
printk("***** Double Fault *****\n"); z_fatal_print("Double Fault");
#ifdef CONFIG_THREAD_STACK_INFO #ifdef CONFIG_THREAD_STACK_INFO
if (check_stack_bounds(_df_esf.esp, 0, _df_esf.cs)) { if (check_stack_bounds(_df_esf.esp, 0, _df_esf.cs)) {
reason = K_ERR_STACK_CHK_FAIL; reason = K_ERR_STACK_CHK_FAIL;

View file

@ -51,12 +51,12 @@ void z_unhandled_vector(int vector, int err, struct xuk_entry_frame *f)
/* Yes, there are five regsiters missing. See notes on /* Yes, there are five regsiters missing. See notes on
* xuk_entry_frame/xuk_stack_frame. * xuk_entry_frame/xuk_stack_frame.
*/ */
printk("*** FATAL ERROR vector %d code %d\n", vector, err); z_fatal_print("*** FATAL ERROR vector %d code %d", vector, err);
printk("*** RIP %d:0x%llx RSP %d:0x%llx RFLAGS 0x%llx\n", z_fatal_print("*** RIP %d:0x%llx RSP %d:0x%llx RFLAGS 0x%llx",
(int)f->cs, f->rip, (int)f->ss, f->rsp, f->rflags); (int)f->cs, f->rip, (int)f->ss, f->rsp, f->rflags);
printk("*** RAX 0x%llx RCX 0x%llx RDX 0x%llx RSI 0x%llx RDI 0x%llx\n", z_fatal_print("*** RAX 0x%llx RCX 0x%llx RDX 0x%llx RSI 0x%llx RDI 0x%llx",
f->rax, f->rcx, f->rdx, f->rsi, f->rdi); f->rax, f->rcx, f->rdx, f->rsi, f->rdi);
printk("*** R8 0x%llx R9 0x%llx R10 0x%llx R11 0x%llx\n", z_fatal_print("*** R8 0x%llx R9 0x%llx R10 0x%llx R11 0x%llx",
f->r8, f->r9, f->r10, f->r11); f->r8, f->r9, f->r10, f->r11);
/* FIXME: Why isn't xuk_entry_frame a NANO_ESF? */ /* FIXME: Why isn't xuk_entry_frame a NANO_ESF? */

View file

@ -8,9 +8,7 @@
#include <kernel_structs.h> #include <kernel_structs.h>
#include <inttypes.h> #include <inttypes.h>
#include <kernel_arch_data.h> #include <kernel_arch_data.h>
#include <sys/printk.h>
#include <xtensa/specreg.h> #include <xtensa/specreg.h>
#include <logging/log_ctrl.h>
#ifdef XT_SIMULATOR #ifdef XT_SIMULATOR
#include <xtensa/simcall.h> #include <xtensa/simcall.h>
@ -27,7 +25,7 @@
}) })
#ifdef CONFIG_PRINTK #if defined(CONFIG_PRINTK) || defined(CONFIG_LOG)
static char *cause_str(unsigned int cause_code) static char *cause_str(unsigned int cause_code)
{ {
switch (cause_code) { switch (cause_code) {
@ -94,26 +92,26 @@ static inline unsigned int get_bits(int offset, int num_bits, unsigned int val)
static void dump_exc_state(void) static void dump_exc_state(void)
{ {
#ifdef CONFIG_PRINTK #if defined(CONFIG_PRINTK) || defined (CONFIG_LOG)
unsigned int cause, ps; unsigned int cause, ps;
cause = get_sreg(EXCCAUSE); cause = get_sreg(EXCCAUSE);
ps = get_sreg(PS); ps = get_sreg(PS);
printk("Exception cause %d (%s):\n" z_fatal_print("Exception cause %d (%s):", cause, cause_str(cause));
" EPC1 : 0x%08x EXCSAVE1 : 0x%08x EXCVADDR : 0x%08x\n", z_fatal_print(" EPC1 : 0x%08x EXCSAVE1 : 0x%08x EXCVADDR : 0x%08x",
cause, cause_str(cause), get_sreg(EPC_1), get_sreg(EPC_1), get_sreg(EXCSAVE_1), get_sreg(EXCVADDR));
get_sreg(EXCSAVE_1), get_sreg(EXCVADDR));
printk("Program state (PS):\n" z_fatal_print("Program state (PS):");
" INTLEVEL : %02d EXCM : %d UM : %d RING : %d WOE : %d\n", z_fatal_print(" INTLEVEL : %02d EXCM : %d UM : %d RING : %d WOE : %d",
get_bits(0, 4, ps), get_bits(4, 1, ps), get_bits(5, 1, ps), get_bits(0, 4, ps), get_bits(4, 1, ps),
get_bits(6, 2, ps), get_bits(18, 1, ps)); get_bits(5, 1, ps), get_bits(6, 2, ps),
get_bits(18, 1, ps));
#ifndef __XTENSA_CALL0_ABI__ #ifndef __XTENSA_CALL0_ABI__
printk(" OWB : %02d CALLINC : %d\n", z_fatal_print(" OWB : %02d CALLINC : %d",
get_bits(8, 4, ps), get_bits(16, 2, ps)); get_bits(8, 4, ps), get_bits(16, 2, ps));
#endif #endif
#endif /* CONFIG_PRINTK */ #endif /* CONFIG_PRINTK || CONFIG_LOG */
} }
XTENSA_ERR_NORET void z_xtensa_fatal_error(unsigned int reason, XTENSA_ERR_NORET void z_xtensa_fatal_error(unsigned int reason,
@ -122,7 +120,7 @@ XTENSA_ERR_NORET void z_xtensa_fatal_error(unsigned int reason,
dump_exc_state(); dump_exc_state();
if (esf) { if (esf) {
printk("Faulting instruction address = 0x%x\n", esf->pc); z_fatal_print("Faulting instruction address = 0x%x", esf->pc);
} }
z_fatal_error(reason, esf); z_fatal_error(reason, esf);
@ -135,8 +133,7 @@ XTENSA_ERR_NORET void FatalErrorHandler(void)
XTENSA_ERR_NORET void ReservedInterruptHandler(unsigned int intNo) XTENSA_ERR_NORET void ReservedInterruptHandler(unsigned int intNo)
{ {
printk("INTENABLE = 0x%x\n" z_fatal_print("INTENABLE = 0x%x INTERRUPT = 0x%x (%x)",
"INTERRUPT = 0x%x (%x)\n",
get_sreg(INTENABLE), (1 << intNo), intNo); get_sreg(INTENABLE), (1 << intNo), intNo);
z_xtensa_fatal_error(K_ERR_SPURIOUS_IRQ, NULL); z_xtensa_fatal_error(K_ERR_SPURIOUS_IRQ, NULL);
} }
@ -152,7 +149,7 @@ void exit(int return_code)
: [code] "r" (return_code), [call] "i" (SYS_exit) : [code] "r" (return_code), [call] "i" (SYS_exit)
: "a3", "a2"); : "a3", "a2");
#else #else
printk("exit(%d)\n", return_code); z_fatal_print("exit(%d)", return_code);
k_panic(); k_panic();
#endif #endif
} }

View file

@ -3,7 +3,6 @@
* *
* SPDX-License-Identifier: Apache-2.0 * SPDX-License-Identifier: Apache-2.0
*/ */
#include <sys/printk.h>
#include <string.h> #include <string.h>
#include <xtensa-asm2.h> #include <xtensa-asm2.h>
#include <kernel.h> #include <kernel.h>
@ -85,7 +84,7 @@ void z_irq_spurious(void *arg)
__asm__ volatile("rsr.interrupt %0" : "=r"(irqs)); __asm__ volatile("rsr.interrupt %0" : "=r"(irqs));
__asm__ volatile("rsr.intenable %0" : "=r"(ie)); __asm__ volatile("rsr.intenable %0" : "=r"(ie));
printk(" ** Spurious INTERRUPT(s) %p, INTENABLE = %p\n", z_fatal_print(" ** Spurious INTERRUPT(s) %p, INTENABLE = %p",
(void *)irqs, (void *)ie); (void *)irqs, (void *)ie);
z_xtensa_fatal_error(K_ERR_SPURIOUS_IRQ, NULL); z_xtensa_fatal_error(K_ERR_SPURIOUS_IRQ, NULL);
} }
@ -95,37 +94,38 @@ static void dump_stack(int *stack)
{ {
int *bsa = *(int **)stack; int *bsa = *(int **)stack;
printk(" ** A0 %p SP %p A2 %p A3 %p\n", z_fatal_print(" ** A0 %p SP %p A2 %p A3 %p",
(void *)bsa[BSA_A0_OFF/4], ((char *)bsa) + BASE_SAVE_AREA_SIZE, (void *)bsa[BSA_A0_OFF/4],
((char *)bsa) + BASE_SAVE_AREA_SIZE,
(void *)bsa[BSA_A2_OFF/4], (void *)bsa[BSA_A3_OFF/4]); (void *)bsa[BSA_A2_OFF/4], (void *)bsa[BSA_A3_OFF/4]);
if (bsa - stack > 4) { if (bsa - stack > 4) {
printk(" ** A4 %p A5 %p A6 %p A7 %p\n", z_fatal_print(" ** A4 %p A5 %p A6 %p A7 %p",
(void *)bsa[-4], (void *)bsa[-3], (void *)bsa[-4], (void *)bsa[-3],
(void *)bsa[-2], (void *)bsa[-1]); (void *)bsa[-2], (void *)bsa[-1]);
} }
if (bsa - stack > 8) { if (bsa - stack > 8) {
printk(" ** A8 %p A9 %p A10 %p A11 %p\n", z_fatal_print(" ** A8 %p A9 %p A10 %p A11 %p",
(void *)bsa[-8], (void *)bsa[-7], (void *)bsa[-8], (void *)bsa[-7],
(void *)bsa[-6], (void *)bsa[-5]); (void *)bsa[-6], (void *)bsa[-5]);
} }
if (bsa - stack > 12) { if (bsa - stack > 12) {
printk(" ** A12 %p A13 %p A14 %p A15 %p\n", z_fatal_print(" ** A12 %p A13 %p A14 %p A15 %p",
(void *)bsa[-12], (void *)bsa[-11], (void *)bsa[-12], (void *)bsa[-11],
(void *)bsa[-10], (void *)bsa[-9]); (void *)bsa[-10], (void *)bsa[-9]);
} }
#if XCHAL_HAVE_LOOPS #if XCHAL_HAVE_LOOPS
printk(" ** LBEG %p LEND %p LCOUNT %p\n", z_fatal_print(" ** LBEG %p LEND %p LCOUNT %p",
(void *)bsa[BSA_LBEG_OFF/4], (void *)bsa[BSA_LBEG_OFF/4],
(void *)bsa[BSA_LEND_OFF/4], (void *)bsa[BSA_LEND_OFF/4],
(void *)bsa[BSA_LCOUNT_OFF/4]); (void *)bsa[BSA_LCOUNT_OFF/4]);
#endif #endif
printk(" ** SAR %p\n", (void *)bsa[BSA_SAR_OFF/4]); z_fatal_print(" ** SAR %p", (void *)bsa[BSA_SAR_OFF/4]);
} }
/* The wrapper code lives here instead of in the python script that /* The wrapper code lives here instead of in the python script that
@ -173,7 +173,7 @@ void *xtensa_excint1_c(int *interrupted_stack)
} else if (cause == EXCCAUSE_SYSCALL) { } else if (cause == EXCCAUSE_SYSCALL) {
/* Just report it to the console for now */ /* Just report it to the console for now */
printk(" ** SYSCALL PS %p PC %p\n", z_fatal_print(" ** SYSCALL PS %p PC %p",
(void *)bsa[BSA_PS_OFF/4], (void *)bsa[BSA_PC_OFF/4]); (void *)bsa[BSA_PS_OFF/4], (void *)bsa[BSA_PC_OFF/4]);
dump_stack(interrupted_stack); dump_stack(interrupted_stack);
@ -189,8 +189,8 @@ void *xtensa_excint1_c(int *interrupted_stack)
/* Wouldn't hurt to translate EXCCAUSE to a string for /* Wouldn't hurt to translate EXCCAUSE to a string for
* the user... * the user...
*/ */
printk(" ** FATAL EXCEPTION\n"); z_fatal_print(" ** FATAL EXCEPTION");
printk(" ** CPU %d EXCCAUSE %d PS %p PC %p VADDR %p\n", z_fatal_print(" ** CPU %d EXCCAUSE %d PS %p PC %p VADDR %p",
z_arch_curr_cpu()->id, cause, (void *)bsa[BSA_PS_OFF/4], z_arch_curr_cpu()->id, cause, (void *)bsa[BSA_PS_OFF/4],
(void *)bsa[BSA_PC_OFF/4], (void *)vaddr); (void *)bsa[BSA_PC_OFF/4], (void *)vaddr);

View file

@ -8,6 +8,7 @@
#define ZEPHYR_INCLUDE_FATAL_H #define ZEPHYR_INCLUDE_FATAL_H
#include <arch/cpu.h> #include <arch/cpu.h>
#include <toolchain.h>
enum k_fatal_error_reason { enum k_fatal_error_reason {
/** Generic CPU exception, not covered by other codes */ /** Generic CPU exception, not covered by other codes */
@ -77,4 +78,27 @@ void k_sys_fatal_error_handler(unsigned int reason, const NANO_ESF *esf);
*/ */
void z_fatal_error(unsigned int reason, const NANO_ESF *esf); void z_fatal_error(unsigned int reason, const NANO_ESF *esf);
/**
* Print messages related to an exception
*
* This ensures the following:
* - The log system will enter panic mode if it is not already
* - Messages will be sent to printk() or the log subsystem if it is enabled
*
* Log subsystem filtering is disabled.
* To conform with log subsystem semantics, newlines are automatically
* appended, invoke this once per line.
*
* @param fmt Format string
* @param ... Optional list of format arguments
*
* FIXME: Implemented in C file to avoid #include loops, disentangle and
* make this a macro
*/
#if defined(CONFIG_LOG) || defined(CONFIG_PRINTK)
__printf_like(1, 2) void z_fatal_print(const char *fmt, ...);
#else
#define z_fatal_print(...) do { } while (false)
#endif
#endif /* ZEPHYR_INCLUDE_FATAL_H */ #endif /* ZEPHYR_INCLUDE_FATAL_H */

View file

@ -10,8 +10,11 @@
#include <sys/__assert.h> #include <sys/__assert.h>
#include <arch/cpu.h> #include <arch/cpu.h>
#include <logging/log_ctrl.h> #include <logging/log_ctrl.h>
#include <logging/log.h>
#include <fatal.h> #include <fatal.h>
LOG_MODULE_DECLARE(os);
/* LCOV_EXCL_START */ /* LCOV_EXCL_START */
FUNC_NORETURN __weak void z_arch_system_halt(unsigned int reason) FUNC_NORETURN __weak void z_arch_system_halt(unsigned int reason)
{ {
@ -35,13 +38,13 @@ __weak void k_sys_fatal_error_handler(unsigned int reason,
ARG_UNUSED(esf); ARG_UNUSED(esf);
LOG_PANIC(); LOG_PANIC();
z_fatal_print("Halting system");
printk("Halting system.\n");
z_arch_system_halt(reason); z_arch_system_halt(reason);
CODE_UNREACHABLE; CODE_UNREACHABLE;
} }
/* LCOV_EXCL_STOP */ /* LCOV_EXCL_STOP */
#if defined(CONFIG_LOG) || defined(CONFIG_PRINTK)
static const char *thread_name_get(struct k_thread *thread) static const char *thread_name_get(struct k_thread *thread)
{ {
const char *thread_name = k_thread_name_get(thread); const char *thread_name = k_thread_name_get(thread);
@ -71,18 +74,32 @@ static const char *reason_to_str(unsigned int reason)
} }
} }
void z_fatal_print(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
if (IS_ENABLED(CONFIG_LOG)) {
struct log_msg_ids src_level = {
.level = LOG_LEVEL_ERR,
.source_id = LOG_CURRENT_MODULE_ID(),
.domain_id = CONFIG_LOG_DOMAIN_ID
};
log_generic(src_level, fmt, ap);
} else {
printk("FATAL: ");
vprintk(fmt, ap);
printk("\n");
}
va_end(ap);
}
#endif /* CONFIG_LOG || CONFIG_PRINTK */
void z_fatal_error(unsigned int reason, const NANO_ESF *esf) void z_fatal_error(unsigned int reason, const NANO_ESF *esf)
{ {
struct k_thread *thread = k_current_get(); struct k_thread *thread = k_current_get();
/* TODO: Replace all printk()s here and in arch error handling code z_fatal_print(">>> ZEPHYR FATAL ERROR %d: %s", reason,
* to some special printk_fatal() function, which enables panic
* mode and routes messages to printk or LOG subsystem appropriately
* based on configuration.
*/
#ifdef CONFIG_PRINTK
printk(">>> ZEPHYR FATAL ERROR %d: %s\n", reason,
reason_to_str(reason)); reason_to_str(reason));
/* FIXME: This doesn't seem to work as expected on all arches. /* FIXME: This doesn't seem to work as expected on all arches.
@ -96,8 +113,8 @@ void z_fatal_error(unsigned int reason, const NANO_ESF *esf)
* } * }
*/ */
printk("Current thread: %p (%s)\n", thread, thread_name_get(thread)); z_fatal_print("Current thread: %p (%s)", thread,
#endif /* CONFIG_PRINTK */ thread_name_get(thread));
k_sys_fatal_error_handler(reason, esf); k_sys_fatal_error_handler(reason, esf);